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Abstract

Textile manufacturing and disposal are among the most environmentally damaging product life-cycles

in the early 21st century. For example, clothing disposal in landfills can cause significant damage and

is expanding due to fast-fashion business practices. In addition, as clothing decomposes it emits the

greenhouse gas methane, and toxic chemicals, including dye, can leak into the soil. Recycling discarded

clothing by chemically breaking it down to produce new materials, such as lyocell, has been suggested to

combat some of these issues. However, it is rare to see these technologies applied on a large scale, partly

due to the extensive labour required to sort discarded clothing to the appropriate recycling process.

This thesis examines the utilisation of robots to mitigate labour demands, focusing on pick-and-place

applications involving deformable object manipulation.

Robotic manipulation of textiles remains challenging as fabric displays a unique physical behaviour

due to clothing’s anisotropic nature and non-linear mechanical response. Furthermore, garments can

exhibit various colours, shapes, forms and textures, making physical manipulation and visual interpreta-

tion a series of complex and multifaceted tasks. This thesis addresses dexterous manipulation, recognis-

ing that clothing can present itself in states requiring skilful manipulation, and handling garments can

require intrinsic dexterous skills. As a result, several academic projects have developed end-effectors

to manipulate fabric. However, these solutions are not generalised and target specific manipulation

pipelines such as folding a shirt or grasping flattened material. While previous research uses heuris-

tic human observations to inspire robotic gripper designs, these approaches do not extensively explore

human behaviour and morphology in a robotic context.

This observation is what inspires the research described in this thesis. First, an investigation using

anthropomorphic taxonomies defines the range of skills necessary for a generalised fabric pick-and-

place solution. This device is then modelled using classical mechanics and fabricated. Then, data-

driven approaches in reinforcement learning are applied to build behaviours that enable the end-effector

to robustly execute environmentally constrained behaviour. Finally, this thesis provides a discussion of

the conducted research and an overview of future applications.
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Summary of Notation

Kinematics

Tx,y,z(i) A homogeneous transformation (HT) matrix indicating a translation of i metres

along an axis.

Rx,y,z(i) An HT matrix indicating a rotation along an axis (x,y,z) of i radians.

Ai An HT matrix representing the compounding transformation of row i of the DH

parameters.

Aw A HT matrix representing a static transform to orient a structure relative to the

world frame.

θi A rotation about the z-axis in the DH parameters at row i.

di A displacement along the z-axis in the DH parameters at row i.

ai A displacement along the x-axis in the DH parameters at row i.

αi A rotation about the x-axis in the DH parameters at row i.

qi The position of the ith actuator; units are in meters or radians.

J i A shorthand reference to an actuator within the mechanical system.

q A vector representing the actuator positions.

J(q) A function representing the Jacobian matrix of a serial manipulator.

τi A value representing the force/torque applied by the ith actuator.

τ A vector representing the actuator forces.

fx,y,z A value representing a force applied along an axis(x,y,z).

mx,y,z A value representing a moment of force (torque) applied along an axis(x,y,z).
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Dynamics

L Lagrangian

T Kinetic Energy

U Potential Energy

q̇ A vector representing the actuator velocities.

q̈ A vector representing the actuator accelerations.

M(q) A function representing the joint-space inertia matrix.

C(q, q̇) A function representing the Coriolis matrix.

G(q) A function representing the gravity term.

Pi The position of the centre of mass (CoM) of link i in the world frame.

Ṗi The velocity of the CoM of link i in the world frame.

pi The constant position of link i’s CoM relative to the ith row of the DH parameters.

mi The mass in kilograms of link i.

Ii The constant inertia tensor about the CoM of link i.

ωi The rotational velocity of link i in the world frame.
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Reinforcement Learning

s A state

a An action

r A given reward

(s, a, s′, r) A transition tuple taken each step, consisting of a state, action,

next state and given reward.

πφ A policy neural network with weights φ, also known as an actor

in actor-critic (AC) algorithms.

Qθi A value function neural network with weights θ, also known as a

critic in AC algorithms. In modern approaches there are usually

multiple critic networks denoted with i.

π̄φ A target variant of the policy network used in AC algorithms.

Q̄θi A target variant of the value function network used in AC algorithms

πφ(s) = a An deterministic policy, generates an action from a state.

πφ(a|s) = Pπφ [A = a|S = s] A stochastic policy, generates a probability distribution over

possible actions given a state.

N (m,µ) Refers to a function generating a normal distribution with a mean of

m and standard deviation of µ.

γ Refers to the discount factor, a term usually between 0.9 and 0.99

which dictates the impact of possible future rewards.
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Chapter 1

Introduction

1.1 Motivation

Environmental damage occurs at many steps in the fabric production and disposal cycle as Pensupa et

al. [Pensupa 17] detail. Their overview of the topic provides an in-depth description of the devastat-

ing environmental impact of the clothing industry along with trends in sustainability. One can attribute

the ecological damage of the clothing industry to both the physical waste and the chemical byproducts,

primarily wastewater, generated during manufacturing. One can classify physical textile waste as either

pre-consumer or post-consumer, with the former being the waste from production and the latter being

disposal after use. Due to expanding consumption, levels of post-consumer waste have risen. For exam-

Figure 1.1: An example of clothing in landfill, sourced from Liu [Liu 22].

1
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Figure 1.2: Worldwide production volume of all textile fibres (blue) alongside the subset of produced
chemical (synthetic or man-made) textile fibres (black) from 1975 to 2018 (in 1,000 metric tons)1.

ple, 13 million tons of clothing were sent to landfills in the United States of America (USA) in 2009,

where 14.9% was recycled [Joung 13]. Per an Environmental Protection Agency (EPA) report [EPA 21],

the mass of textiles sent to landfills increased to approximately 17 million tons in 2018.

Shui et al. [Shui 11] note a consistent increase in global per capita consumption (PCC) of clothing

from 3.7kg in 1950 to 10.4kg in 2008. Also noted was that developed countries have been the primary

contributor to most of the growth. However, in more recent decades, the PCC of developing nations

has been growing at a significantly higher rate. Shui et al. [Shui 11] also observe an increased demand

for cheaper synthetic fibres due to the resources required to manufacture natural fibres. Approximately

76 million tons of textiles were produced globally in 2010. This increased to 106 million tons in 2018

(Figure 1.2). Despite the organic components in fabrics, they are slow decomposing waste objects,

taking up to twenty years depending on the composition to biodegrade [Pensupa 17]. Synthetic fibres

are a significant contributor to increased decomposition time. Additionally, decomposing clothing in

landfills can release toxic gases contributing to CO2 emissions.

Each stage of a garment’s commercial life-cycle presents an opportunity for possible polluting events [Clau-

1This statistic comes from several IVC (Industrievereinigung Chemiefaser) chemical fiber industry updates.
Source: https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/.
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dio 07]. Claudio also describes the ecological impact of textile manufacturing and the potential benefits

of recycling. The production process of synthetic fibres can be an emission-intensive process requiring

crude oil. The manufacturing of natural fibres, with cotton being one of the most popular, can also be

environmentally damaging.

Clothing manufacturing can also damage the environment from the wastewater generated when gar-

ments undergo dyeing, rinsing or chemical refinement. The fast-fashion and clothing industry has pro-

duced approximately 20% of the world’s industrial wastewater pollution, according to Kant [Kant 11].

Kant also describes the damaging impact of wastewater on the environment and infrastructure, includ-

ing corrosion of irrigation frameworks, breakdown of drinking water supplies and evaporated chemicals

affecting the air quality in populated areas.

Authors including Bick et al. [Bick 18] and Niinimäki et al. [Niinimäki 20] highlight how rising

consumption and efficiency have lowered pricing and motivated a regular, trend-based consumer pattern,

also known as ‘fast-fashion’. The fast-fashion business model exacerbates the previously discussed en-

vironmental concerns and has led to more demand and unsustainable production measures, representing

a critical environmental threat. Furthermore, Niinimäki et al. [Niinimäki 20] elaborate upon how the

globalisation of the textile industry contributes to pollution inequalities and consequences. Many de-

veloping nations suffer the byproducts of manufacturing, while developed nations are often the primary

beneficiaries of the produced garments.

Additionally, many developed nations often export their post-consumer textile waste to developing

nations. However, this unsustainable paradigm is beginning to fail, with nations refusing to import textile

waste for various reasons, such as protecting local economies. Fast-fashion also produces the issue of

‘deadstock’, a specific type of pre-consumer waste that consists of garments manufactured but unsold or

unused. Usually, incineration disposes of this waste, but such practices destroy the substantial resources

that went into manufacturing. Changing the present status quo of the textile industry is a multifaceted and

complex endeavour involving modifications to both industry practices and consumer habits. Niinimäki et

al. [Niinimäki 20] specifically state that long-term sustainability of the textile industry will require aban-

donment of the fast-fashion model. In the late 2010s and early 2020s, media outlets have reported on the

devastating impact of textile waste, including the article of Besser [Besser 21], which details the impact

of textile exports to Ghana. Approximately 40% of clothing received there is not wearable due to poor

quality. The World Bank provided 9.5 million EUR to construct the Kpone landfill to address Ghana’s

rising textile waste problem. This landfill was full after five years of use. In 2019, the decomposing ma-
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terial caused a methane bubble, which eventually lit and resulted in a fire for 11 months. Unfortunately,

global demand has not stopped, and Ghana still receives approximately 15 million garments per week.

Elsewhere, Siegle [Siegle 19] details the poor practices of the fast-fashion industry, including misrepre-

senting sustainability practices and poor working conditions in developing nations. Siegle specifically

references the collapse of the Rana Plaza complex in Bangladesh, which killed over 1000 workers. The

broader point is that textile manufacturing issues and poor industry practices are common, impacting the

world, and require immediate attention.

Several proposed methods to combat the environmental impact of textiles in landfill exist. Zamani

et al. [Zamani 15] present a case study on Swedish textile recycling practices, mentioning techniques

including energy recovery (incineration), material reuse and chemical recycling. Incineration to create

energy is a popular, conventional method that combusts textiles at high temperatures before performing

energy recovery, such as using the heat produced to generate steam which powers generators. However,

as outlined by Zamani et al. [Zamani 15], this process generates emissions and is considered a potential

high global warming activity. Pensupa et al. [Pensupa 17] also discuss the emissions associated with

incineration and detail how this process can create and release leachate.

Material reuse is another option to divert clothing from landfills, in which post-consumer waste

is either resold or repurposed. Pensupa et al. [Pensupa 17] mention that such approaches exist, but

repurposing occurs only with a minority of textile waste. Zamani et al. [Zamani 15] elaborate that

material reuse usually only applies to niche markets and relies heavily on the quality of the collected

material and the demand for reuse. Finally, chemical recycling processes are another possibility that can

divert textile waste from landfills. Zamani et al. [Zamani 15] discuss the process of separating cellulose

(an organic polymer found in natural fibres) from polyester with NMMO (N-Methylmorpholine N-oxide)

solvent, and the processes surrounding polyester recycling. The first step in recycling polyester is to

separate pure polyester garments from mixed or cellulose textile waste via manual labour. Pensupa et

al. [Pensupa 17] expand on these techniques with an in-depth discussion surrounding various chemical-

based fabric waste valorisation processes.

Several benefits are associated with these recycling processes. For example, Claudio [Claudio 07]

discusses how using recycled cotton instead of virgin material can save up to 20,000 litres of water

per kilogram of cotton grown. The review of Pensupa et al. [Pensupa 17] concludes with statements

regarding the current methods for textile recycling while highlighting barriers. The authors note the

extensive labour required to separate fabric waste by size, composition and fibre type parameters, a task
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made more difficult with traditional waste streams [Wang 10]. Zamani et al. [Zamani 15] note that the

range of garment compositions to be recycled will influence the structure of any recycling endeavour.

One example of an existing recycling project by Heikkilä et al. [Heikkilä 19] separates four categories

of textile waste with near-infrared (NIR) technology at 90% accuracy. However, a collection and sorting

system will be an essential component for large-scale recycling endeavours. The sheer volume of textile

waste generated makes manual labour intensive, expensive and economically impractical for a sorting

module. However, robots could perform some of the manual labour involved in sorting textiles to reduce

costs and overcome the discussed limitations.

1.2 A Robotic Solution

As noted, recycling of diverse textile waste streams remains limited. While several commercial endeav-

ours around the globe have attempted to implement sorting systems, their capabilities are usually limited

to specific waste streams or polymers. Zamani et al. [Zamani 15] recognise that textile waste’s diverse

compositions and colours can limit commercial applications. Wang [Wang 10] describes how targeting

specific materials is a preferred commercial structure, as businesses can target specialised processes or

recycling outcomes and discusses how certain endeavours aim for particular waste streams, such as uni-

forms for sport or education institutes. Alternatively, some processes target alternative textile items such

as carpets. However, such endeavours are still limited by sorting capabilities.

While exploring the issue of textile waste, discussions with Australian textile recycling companies

revealed the difficulties commercial endeavours experience with diverse waste streams. They detail how

using human labour to sort textile waste is costly and puts labourers at risk of repetitive strain injuries.

Additionally, humans can have an adverse response to specific items within the textile waste, such as

undergarments, which are considered unhygienic. These factors have resulted in companies targeting

only the most profitable textile waste streams. Part of the recycling process outlined by these companies

involved using human labour to sort clothing into broad categories based on the type of garment or colour.

While more complex actions, such as removing buttons, are present in the pipeline, addressing this first

sorting step with robotic labour could empower recyclers to pursue a broader range of waste streams for

recycling. The long-term vision of this research is to enable robots to perform simple but laborious and

repetitive tasks in the recycling pipeline, working alongside humans and refining the sorting process, to

bring textile waste management closer to a circular economic model.
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As elaborated in subsequent chapters, robots are currently limited in their fabric manipulation ca-

pabilities. Therefore, an investigation and development process of a novel end-effector designed for

deformable manipulation has been undertaken. Previously observed end-effectors designed for fabric

manipulation do not generalise to a wide range of applications, nor do they capture a complete set of

manipulation skills needed to effectively grasp and sort clothing in a wide range of environments. As hu-

mans presently remain the most effective manipulators of fabrics and deformable objects, a set of skills

and features are derived from anthropomorphic and human-centric studies to inform the development

of this proposed robotic end-effector. This generalised solution could contribute to autonomous fabric

waste sorting applications. Finally, as part of developing the robotic gripper, state-of-the-art reinforce-

ment learning (RL) algorithms train the device to perform grasps that leverage environmental constraints,

which is currently a novel challenge in the scope of fabric manipulation.

1.3 Thesis Contributions

• The first contribution develops anthropomorphic hand-centric taxonomies that describe fabric ma-

nipulation primitives. Currently, many grippers have been developed to address aspects of de-

formable manipulation. However, these devices use heuristic observations of human behaviour to

develop solutions or create devices with complex design components. In order to address these lim-

itations, this thesis creates fabric-specific derivatives of state-of-the-art hand-centric taxonomies to

qualify the grasp pose and dexterous capabilities. These custom taxonomies are novel as they are

the first example of hand-centric taxonomies designed to qualify manipulation primitives targeting

fabric manipulation.

• The second contribution discovers novel insights into gripper design for generalised solutions tar-

geting deformable manipulation. Prior grippers developed for fabric manipulation are analysed

under an anthropomorphic lens using the taxonomies created in the previous contribution. This

study is the first example of an investigation that surveys hand-centric features of grippers target-

ing fabric manipulation. Observations from this study are validated by a user study examining how

different grasp constraints impact humans’ ability to grasp and manipulate clothing.

• The third contribution models and builds a novel gripper for textile pick-and-place applications.

This thesis conceives of a novel gripper that fulfils the requirements of a generalised pick-and-place

grasping solution for textile waste by building upon the observations discovered in the second con-
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tribution. The development includes using established rigid-body kinematic and dynamic analyses

to understand the system’s physical characteristics alongside the development of the electronics

and integration into a robotics framework. After this contribution, a unique gripper is developed

compared to the existing state-of-the-art and becomes a platform for the reinforcement learning

undertaken as the fourth and final contribution.

• The final contribution develops a reinforcement learning reward schema inspired by human obser-

vations that enables reinforcement learning algorithms to learn grasping motions that exploit the

environment. Previous research projects have investigated how humans leverage the environment

while grasping flattened materials. This contribution presents the first example of a data-driven

approach towards grasping motions that leverage the environment under a fabric manipulation

context. The work undertaken involves the development of a simulated reinforcement learning

environment with the gripper developed in the previous contribution and an evaluation of trained

policies on the hardware platform.

1.4 Chapter Outline

Chapter 2 contains a literature review detailing the theory, techniques and inspirations that inform the

research. The literature review surveys topics including anthropomorphic manipulation, autonomous

fabric handling, robotic grippers, and reinforcement learning. Investigation of human-inspired manip-

ulation requires reference to taxonomies derived from observed human manipulation behaviour, using

descriptors that can classify both grasp pose and dexterous manipulation. Therefore, a focus on anthro-

pomorphic classification schemes and their applications is presented. The survey also discusses how

anthropomorphic taxonomies can inspire novel gripper designs or desired robot behaviour.

The next section of the literature review discusses robot manipulators, the design of devices targeting

fabric manipulation, challenges within manipulating clothing, and various trends in dexterous manip-

ulation. Additionally, details of traditional rigid body kinematics, kinostatics, and dynamic modelling

techniques are presented, recognising that the proposed novel gripper in Chapter 4 is a serial-link ma-

nipulator. These modelling methods allow for the evaluation of forces exerted by actuators and their

relationship with the positions, velocities, accelerations and wrenches of the tool-centre-point (TCP).

Finally, data-driven techniques for learning intelligent robotic behaviour are discussed. To this end, prior

work surrounding reinforcement learning techniques and applications within robotics is presented. The
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chapter highlights state-of-the-art (SOA) methods and how they can apply in this project’s research,

which performs the learning of dexterous manipulation skills.

A recent general-purpose survey of robotic grasping [Babin 21] discusses current challenges in grip-

per development, including design approaches and applications, noting that modern development of

robotic systems requires a multidisciplinary approach involving fabrication/design principles and vari-

ous engineering disciplines, including electronics, software and mechanics. Taxonomies are also often

utilised as a mechanism to qualify parameters, such as anthropomorphic grasp pose [Feix 15], contact

relationships [Borràs 20], or manipulation primitives [Heinemann 15]. In designing robot manipulators,

Babin and Gosselin [Babin 21] discuss the complexity of defining manipulation skill-set and scope, not-

ing some approaches use taxonomies to define capabilities of solution-specific manipulators while others

attempt to formulate generalised solutions to navigate a wide range of manipulation tasks. At a high level,

it is concluded that the conundrum involves determining whether the desired task informs the design or

whether the inverse relation is true. This discussion can also inform sensor choice and placement.

While surveying the literature, a human-inspired theme was found to be common amongst manip-

ulators developed to manipulate textiles. This theme could be expressed as anthropomorphic features

within manipulators, or the construction of manipulators that replicate human behaviours. Combining

the human-inspired theme of previous devices aimed at fabric manipulation and the recommended multi-

disciplinary approach of Babin and Gosselin [Babin 21], this thesis follows a multidisciplinary approach

to formulate a novel gripper for textile waste sorting. Each chapter presents an investigation into gripper

design and textile manipulation under a specific discipline which contributes to the formulation, develop-

ment and training of a novel manipulator. Additionally, the formulation and development of the gripper,

which occurs across Chapters 3 and 4, follows the Design Thinking approach [Lewrick 18].

Design thinking, at a high level, is a cognitive process for finding solutions to indeterminate issues by

carefully studying key stakeholders and working through an iterative design process. Peng discusses the

design thinking conceptual framework in the textbook by Herath and St-Onge [Herath 22], describing

its origins and highlighting various interpretations. The approach outlined by Peng follows a version of

design thinking called the Double Diamond approach (Figure 1.3), which Chapters 3 and 4 follow to

deliver the novel gripper.

The double diamond approach uses the four steps of discover, define, develop, and deliver. First,

the discover step identifies a core problem set that requires addressing. The next step, define, identifies

areas to improve by gathering insights about present limitations. One can iterate through the steps of
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Figure 1.3: The double diamond design thinking framework, Herath and St-Onge [Herath 22].

discover and define multiple times, as visualised in Figure 1.3, while establishing a clear problem scope.

The third stage, develop, consists of the two sub-steps of ideate and prototype. Ideation occurs by

formulating solutions based on the insights gained through the previous steps. The prototyping stage

develops a clearly defined solution from the conceptual stages of discover, define and ideate. In addition,

an evaluation of developed prototypes takes place to determine if the proposed solution fulfils an ideated

vision or requires improvement. Prototyping is an iterative process exploring a solution’s risks and

opportunities while refining the design. The final step of deliver brings the prototype to an application

organisation with further validation occurring, which confirms that the constructed prototype fits the

intended organisation’s requirements. Figure 1.3 highlights that further iteration can occur across the

complete process of discover, define, develop, and deliver if required.

Within the double diamond approach, the literature review performs the step of discover by identi-

fying present limitations and unexplored research avenues. The first research-oriented project, detailed

in Chapter 3, performs the steps of define and ideate to formulate a novel gripper design by surveying

existing custom-designed grippers under an anthropomorphic manipulation lens. Such an approach in-

vestigates the robotic manipulation of fabric from a neuroscientific and psychological viewpoint. Topics
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discussed include the applications, design inspirations and grasping strategies. The core contribution

of Chapter 3 uses anthropomorphic hand-centric classification schemes to identify previously unknown

gaps from existing manipulators, resulting in a novel conceptual robot gripper based on a human grasp

configuration. In contrast, previous research has created manipulators inspired by specific human be-

haviours, desired garment configurations or specific manipulation primitives. The novel gaps and con-

ceptual design derived from the anthropomorphic survey lay the groundwork for the research performed

in Chapters 4 and 5. A user study also validates that the conceptual gripper design is sufficient for

generalised textile waste sorting.

Chapter 4 continues the double diamond approach by performing the prototype step, using classi-

cal mechanics, electronics engineering and software development practices to model and fabricate the

novel gripper. This research uses established practices to model the gripper’s kinematics, kinostatics

and dynamics, describing the system’s motion and physical characteristics. Following these details, a

description of the fabrication process, control mechanisms, integrated sensors, and ROS architecture

is presented. Finally, Chapter 4 concludes with an evaluation of the gripper’s mechanical capabilities,

including grip strength and basic grasping actions. In terms of the double diamond methodology, this

chapter concludes by executing the final deliver step, completing the design thinking process and pro-

ducing a research prototype that is ready for a data-driven investigation.

The investigation of Chapter 5 enhances the produced gripper by applying reinforcement learning

techniques to teach dexterous behaviour that leverages the environment to assist with grasping flattened

materials. Such a skill is commonly associated with the exemplary manipulation capabilities of human

beings [Eppner 15]. Continuing the human-inspired theme of Chapter 4, the contribution of Chapter 5

studies fabric manipulation from a machine learning perspective, which formulates a reward signal based

on observed human behaviour from the literature and then trains two off-policy RL algorithms to execute

these contact-rich grasping motions on the novel gripper. Such an approach is novel to grasping flattened

materials and executing environmentally constrained grasping. Following the research chapters, the final

discussion and concluding remarks outline the novelty and further work to pursue.



Chapter 2

Literature Review

Sanchez et al. [Sanchez 18] discuss robotic manipulation of deformable materials and highlight the com-

plexity involved. Their review encompasses manipulating and sensing fabric, rope and quasi-deformable

materials, including paper and sponges. A range of technical challenges for robotic systems become

apparent when attempting to perform seemingly simple fabric-based chores such as folding laundry or

placing garments on coat hangers. Clothing exhibits little or no compression strength and will respond

with non-linear mechanical behaviour to applied forces. Such features result in garments displaying a

near-infinite range of physical states for a single item. In addition, deformations such as wrinkles or

creases usually store low elastic energy [Jiménez 17], meaning clothing will generally not spontaneously

revert to previous states or configurations. Finally, differing fabric compositions or weaves result in

garments displaying various mechanical behaviours and unique appearances, further complicating visual

interpretation and manipulation. Within the broad topic of robotic textile manipulation, this thesis fo-

cuses on formulating, developing and training a novel robot gripper that sorts garments in diverse textile

waste streams. Such research requires understanding related topics, research gaps and possible method-

ologies, which this chapter addresses with a literature review. A common theme through the literature

was the way in which humans are considered the most advanced manipulators. Therefore, the developed

gripper and dexterous skills formulated throughout the research chapters take inspiration from observed

human-centric capabilities for autonomous fabric handling.

11
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2.1 Humans - The Expert Manipulators

Humans are exemplary and adaptable physical manipulators of the world [Feix 14,Huang 21,Eppner 15].

Therefore, a significant amount of previous research investigates human manipulation behaviour. These

efforts include development of novel taxonomies that use neuroscientific definitions to describe anthro-

pomorphic aspects [Cutkosky 89, Feix 15, Kang 92]. Other research looks to observational studies of

human behaviour while manipulating objects [Kazemi 14, Heinemann 15, Sarantopoulos 18]. These ap-

proaches try to understand human manipulation’s behaviours, kinematics, constraints and capabilities

to assist the transference of dexterous skills to robotic modules. Applying skills to robots can involve

incorporating observations into motion planning approaches, designing anthropomorphic manipulators,

or replicating dexterous skills in autonomous systems.

Understanding human-like manipulation in a robotic context has been a significant investigation area

encompassing studies that examine human grasp poses or manipulation behaviour. Such research com-

monly creates taxonomies that describe certain aspects of anthropomorphic manipulation. Taxonomies

can take various forms, including tree data structures, hierarchies or matrices. Taxonomies can also

define manipulation aspects at a high level or target specific behaviours. For example, Heinemann et

al. [Heinemann 15] present a binary-tree-based taxonomy aiming at a specific set of manipulation prim-

itives involved in grasping behaviour that leverages the environment. While describing manipulation,

discussed aspects can either be hand-centric or object-centric. Hand-centric aspects focus on the ma-

nipulator pose and motion to qualify the grasp or manipulation primitive. In contrast, object-centric

parameters utilise information from the manipulation target or task context [Cutkosky 89].

Object-centric definitions can assist when defining manipulation strategies while considering the tar-

get object’s state and desired configuration. An object-centric taxonomy [Borràs 20] describes grasps

in fabric manipulation based on the intrinsic and extrinsic virtual fingers1 present within a manipula-

tion. Borràs et al. built a comprehensive framework that describes clothing configurations based on

environmental and manipulation interactions by surveying commercial and custom grippers for fabric

manipulation. They discuss how point-to-point grasping remains common throughout grippers targeting

fabric manipulation. Additionally, they highlight the environment surface’s significant role while dis-

cussing various fabric manipulation scenarios. They use their framework to define manipulation prim-

itives within fabric handling tasks to establish gripper designs and scope manipulation requirements.

While this object-centric approach presents insights into fabric manipulation, no hand-centric investiga-

1See Section 2.1.1 for a description of Virtual Fingers.
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tions into the same topic have occurred, despite numerous grippers within this context inspired by the

human hand [Von Drigalski 17b, Le 13, Koustoumpardis 14, Koustoumpardis 17].

Hand-centric taxonomies make descriptive comparisons to the human hand for the pose and motion

of robotic manipulators. These descriptors can then describe actions or behaviours taken to perform

grasping and dexterous skills. Using anthropomorphic hand-centric analysis techniques can also inspire

designs, define functionality and inform system scope [Feix 15].

2.1.1 Defining Grasp Pose

Describing grasp configurations of a human hand in the context of robotic end-effectors has been a dif-

ficult task, as illustrated in various studies. Feix et al. [Feix 15] define a grasp as “every static hand

posture with which an object can be held securely with one hand, irrespective of the hand orientation”.

An early benchmark of human grasping behaviour in a robotic context [Cutkosky 89] is referenced reg-

ularly throughout grasping studies, and still influences modern anthropomorphic grasping taxonomies.

Cutkosky [Cutkosky 89] also introduced concepts from the field of neuroscience, comprehensively dis-

cussed in the articles of Iberall et al. [Iberall 86,Arbib 85,Iberall 97]. These fundamental principles exist

in the modern SOA (state-of-the-art) grasp classifiers, including the research of Feix et al. [Feix 15].

The starting feature to discuss is the power or precision classification of a grasp, referred to as the

grasp type. This notion was initially discussed by Napier [Napier 56], who describe how all prehensile

interactions can require power or precision features. Power grasps are static poses that rigidly hold an

object, and motion must come from the arm or wrist. In contrast, precision grasps are seen as weaker

grips which retain the ability to perform intrinsic dexterous manipulation. Cutkosky [Cutkosky 89]

initially uses this descriptor to broadly separate grasp configurations.

However, classifying grasp types as this binary descriptor can be limiting. Thus, research projects

such as Kamakura et al. [Kamakura 80] discuss an additional intermediate state for grasp types. This

addition was necessary because certain grasp poses can feature elements of both power and precision in

similar proportions [Feix 15]. An example of such a grasp would be the lateral grasp [Iberall 97], which

has been classified as a power grasp by Cutkosky [Cutkosky 89] and Kang and Ikeuchi [Kang 92]. In

contrast, others have described this pose as a precision grasp [Tyldesley 96].

Another concept discussed in the research of Iberall [Iberall 97] is ‘virtual fingers’ (VF). Originally

described as an abstract representation of a collection of individual fingers and hand surfaces applying an

oppositional force, any fingers that form a single body in a grasp merge into a single VF. This principle
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assists in defining prehension, where a prehensile grasp is any interaction involving more than a single

virtual finger. Non-prehensile refers to only a single finger being present in the manipulation action.

Feix et al. [Feix 15] refine the definition of prehensile as an interaction that a single contact point cannot

accurately represent. Also discussed in Iberall’s research is the opposition type parameter. This feature

describes the force directions within a grip with the options of palm opposition (grasping forces applied

in a parallel direction to the palm), pad opposition (grasping forces applied in a perpendicular direction

to the palm) or side opposition (grasping forces applied in a transverse direction to the palm). Further

visualisation and description of these features are provided in Chapter 3 (See Fig. 3.9).

Grasp taxonomies exist in various forms. For example, Cutkosky [Cutkosky 89] utilised a binary tree

structure that initially classifies grasps as power or precision, then further refines grips by prehension and

target object geometry. This binary tree taxonomy starts by classifying grips with hand-centric definitions

before refining the grasp with object-centric descriptors. A wide range of research projects has built upon

this topic describing various grasps and applications. A more recent SOA taxonomy for anthropomorphic

grasp comparison is the GRASP taxonomy [Feix 15].

The GRASP taxonomy, visualised in Figure 2.1, involved a comprehensive overview of the literature

detailing anthropomorphic grasping definitions. The name of the GRASP taxonomy comes from the Eu-

ropean project that funded the research. The GRASP taxonomy defines thirty-three grasps and sorts the

observed grips into seventeen categories. Parameters such as grasp orientation, literature frequency, and

contact points informed the taxonomy development process. The classifying architecture of the GRASP

taxonomy utilised the four parameters of opposition types, grasp type, thumb adduction/abduction and

virtual fingers for classification. The thumb adduction/abduction descriptor is a binary parameter that

refers to the rotation of the thumb. For example, the colloquial hand symbol of a ‘thumbs up’ holds the

thumb in an adducted position. Therefore, an abducted pose occurs when the base rotation is similar to

forming a closed fist. The GRASP taxonomy is matrix structured with cells holding various grasps, their

location within the matrix determined by their hand-centric characteristics.

While comprehensive, the GRASP taxonomy does not account for object-centric parameters or vari-

ations in contact. Thus several grasps described in the literature can populate a single cell within the

matrix structure as shown in Figure 2.1. This taxonomy also omits uncommon grasp configurations,

which results in some cells being empty. For example, Feix et al. [Feix 15] describe a grasp config-

uration holding a cigarette that is not present in Figure 2.1. Feix and colleagues also argue that such

grasps are generally unnecessary to describe when discussing manipulation and easily accommodated if
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Figure 2.1: Summary of the GRASP taxonomy [Feix 15].

required. The taxonomy structure also remains adaptable to develop task-specific classification schemes

where one could optimise the scope of hand configurations and level of granularity. While possible

gaps remain, the GRASP taxonomy presents a thorough survey of human grasp poses and provides a

comprehensive grasp classification scheme.

An early version of the GRASP taxonomy [Feix 09] was used by Bullock et al. [Bullock 13, Bul-

lock 15] to label observed grasps from a video dataset constructed by recording machinists and house-

cleaners. Furthermore, the GRASP taxonomy also acts as a foundational framework that subsequent

studies have used as an inspiration or baseline comparison for building their own classification architec-

tures. Examples include the taxonomies of Abbasi et al. [Abbasi 16], Stival et al. [Stival 19], and Arapi

et al. [Arapi 21], all of which were both influenced by and utilised the GRASP taxonomy. However,

the more significant point in listing these examples is to demonstrate the general acceptance within the

scientific community that the GRASP taxonomy of Feix et al. [Feix 15] is broadly considered a SOA
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taxonomy for describing anthropomorphic grasp poses.

2.1.2 Defining Human Dexterous Manipulation

While the GRASP taxonomy presents a sufficient framework for describing anthropomorphic grasp

poses, it cannot represent behaviour related to dexterous manipulation such as intrinsic manipulation,

manipulator motion and object contact interactions. It can also be challenging to describe grasping and

dexterous manipulation under a single classification architecture. Thus taxonomy architectures that can

describe such behaviour are also discussed. There are many challenges in classifying manipulation be-

haviour, as task context and required manipulation skills vary. For example, the taxonomy of Heinemann

et al. [Heinemann 15] describe actions such as reach, slide or flip, among others, referring to manipula-

tion strategies that exploit the environment.

However, requirements exist for a more generalised framework targeting dexterous manipulation that

can broadly characterise physical behaviour while considering contact, motion, and intrinsic actions. The

research of Bullock et al. [Bullock 12] presents a taxonomy that describes human dexterous manipulation

behaviours as a binary tree based on the parameters of contact, prehension, motion, within-hand motion

and motion at contact. For future reference, the expression In-Hand Dexterous Manipulation (IHDM)

taxonomy refers to their classification scheme. Unlike the GRASP taxonomy, which is purely hand-

centric, the IHDM taxonomy accounts for additional information within an interaction regarding the

object, environment and motion at the wrist. This taxonomy also applies to the context of robotics,

and also presents an additional scheme to classify the direction and rotation of in-hand manipulation.

Bullock and colleagues suggest pairing the IHDM taxonomy with a grasp taxonomy to classify dexterous

manipulation and grasp behaviour simultaneously. Nakamura et al. [Nakamura 17] took this approach by

using the GRASP and IHDM taxonomies alongside an additional medical taxonomy to capture a video

dataset of manipulations occurring in a convenience store.

The IHDM taxonomy is applied explicitly in Chapter 3 to describe actions taken by robotic manipula-

tors towards deformable manipulation. A pertinent observation about this taxonomy is that the structure

and descriptors are generalised and abstract, and not specific to any particular gripper design [Liu 14].

However, Liu et al. [Liu 14] take inspiration from how the IHDM taxonomy defines motion to encode

additional direction information into observed everyday activities alongside a more traditional manipu-

lation primitive classification scheme.
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2.1.3 Environmental Exploitation Grasping

Eppner et al. [Eppner 15] comprehensively surveyed the topic of grasping while exploiting environmen-

tal constraints and discussed the associated benefits. Others have noted that simplified effectors can be

capable of grasping objects from a level surface [Xu 09, Odhner 12, Yoshimi 12]. These studies utilise

a non-prehensile wiping motion from a compliant finger inward towards a grasp. The described wip-

ing motion approximates how humans exploit environmental constraints with their fingertips. Eppner

et al. [Eppner 15] also discuss shape adaptation, the conformity of a manipulator to a static grasping

target. As uncertainty exists in computer vision, tactile sensing, and actuation modules, shape adaption

presents one possible solution to these intrinsic complexities. Grippers that utilise soft robotic com-

ponents or tendon-based mechanisms commonly perform shape adaption, an example being the iHY

gripper presented by Odhner et al. [Odhner 14]. The benefit of overcoming intrinsic uncertainties with

shape adaptation can apply to environmental exploitation grasping, where the approach can account for

unknown parameters between the object and the environment surface.

An earlier article [Eppner 13] specifically demonstrated that methods with simplified vision com-

ponents could use shape adaptability to account for the finer geometric details of an object and the

environment. Eppner et al. [Eppner 15] also develop several environmentally constrained (EC) grasping

strategies for grasping static objects from a surface with a Barrett robot hand, before using these grasping

strategies to develop an anthropomorphic, pneumatic gripper with the explicit requirement of grasping

static objects while leveraging environmental constraints. Dafle et al. [Dafle 14] introduce extrinsic dex-

terity, describing this concept as utilising external forces such as gravity or the environment to enhance

in-hand manipulation, and demonstrate how simple grippers using these external factors are capable of a

range of in-hand dexterous skills.

EC grasping is also considered anthropomorphic. For example, Eppner et al. [Eppner 15] performed

a small human-centric analysis in which participants grasped objects from a flat surface. Participants

were either unimpaired, or their vision was limited with a set of lenses. Participants resorted to environ-

mentally exploitative grasps more often when impaired, indicating a reliance on such approaches when

visual data streams were limited. Grasping duration was also increased when vision was impaired. Other

authors have also considered human-centric interpretations of environmental grasping. For example,

Puhlmann et al. [Puhlmann 16] built upon the research of Heinemann et al. [Heinemann 15], further

analysing human behaviour to construct a framework for robot grasping while interacting with the envi-

ronment. In that study, subjects participated in an observation exercise in a similar manner to Eppner et
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al. [Eppner 15]. However, another constraint where participants could not use the environment was also

applied. Participants saw a significant deterioration in grasp performance from the presented observation

exercise when instructed not to use the environment.

Sarantopoulos and Doulgeri [Sarantopoulos 18] also present human-inspired grasping strategies that

explicitly target environmental exploitation. An assumption made in this research was that both the robot

gripper and manipulator were compliant mechanical devices. Similarly, Kazemi et al. [Kazemi 14] devel-

oped human-inspired environmental exploitation grasping strategies. Their observational study demon-

strates how humans naturally gravitate towards environmental exploitation when permitted, especially

when visually constrained. Kazemi et al. [Kazemi 14] then present a series of grasping strategies based

on compliant actuation mechanisms for the grasping of relatively minute objects when compared to the

robotic manipulator. Alternatively, Santina et al. [Della Santina 17] present an article that studies possible

kinematic, synergistic strategies when performing environmental exploitation grasping. They observed

hand pose behaviour in pre-shaping and interaction stages of grasping from human subjects. Like Eppner

et al. [Eppner 15], Santina et al. [Della Santina 17] also noticed an increase in grasping duration, along

with an increase in force applied to the environment when impeded. In their case, the impeded condition

limited the tactile sensing of the participant’s fingertip.

Many grippers contain passive components to account for the environment while grasping, espe-

cially manipulators that target fabric. Examples include the tendon-driven gripper of Koustoumpardis

et al. [Koustoumpardis 14] or the industrial CloPeMa manipulator with variable stiffness control by

Le et al. [Le 13]. Some generalised grippers perform EC grasping with soft components such as the

pneumatic RBO hand by Eppner et al. [Eppner 15]. Commercial devices used by Sarantopoulos and

Doulgeri [Sarantopoulos 18]2 use intrinsic compliance within the joints or a joint admittance controller

to perform EC grasping.

The discussed research projects indicate that compliant elements, either as internal control mecha-

nisms or physical characteristics, are required for any manipulator that exploits the environment while

grasping. However, modelling such an interaction can be complex, as demonstrated by Salvietti et

al. [Salvietti 15]. They present a mathematical framework for modelling compliant hands and arms

while interacting with the environment to understand the interaction between the hand, object and en-

vironment. Applications of the mathematical framework can evaluate arm/hand capabilities and infer

design features. In a recent comprehensive review of robotic grippers, Babin and Gosselin [Babin 21]

2Manipulators utilised included the Barrett Hand BH8-282, Shadow Hand Lite and Shadow Smart Grasping System.
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(a) Murakami et al. [Murakami 04] (b) Odhner et al. 2012 [Odhner 12] (c) Yoshimi et al. [Yoshimi 12]

Figure 2.2: Examples of grippers performing EC grasping.

note the difficulties involved in environmental exploitation. They suggest using soft or flexible robot

components to navigate this complex interaction.

Aside from human grasping techniques, physical features of the human hand have also inspired

gripper features when performing EC grasping. Specifically, Murakami et al. [Murakami 04] present

a soft fingertip with a hard nail to assist in manipulating flattened paper on a surface. They showed

how such a design allowed for a dynamic friction adjustment within the interaction without significantly

altering the applied normal force against the environment. Fingernail-like appendages can also be helpful

when transitioning from an environment contact to a flat grasping target. The nail is inserted between the

environment surface and the target to assist the grasp in such a situation. This approach is analogous to

the method utilised by Yoshimi et al. [Yoshimi 12] while picking up a credit card. A similar approach was

also seen by Odhner et al. [Odhner 12], which targeted a flip and pinch task using the Yale OpenHand T42

gripper. Odhner et al. [Odhner 12] performed a grasp exploiting the environment to obtain a precision

grasp on a coin. While attempting to catch step points where the environment and coin are in contact, the

fingertip adopted a design with ridges mimicking a fingernail’s sharp contact features, which provided

a wide range of contact normals from the side, improving the frictional contact with the object while

grasping. Figure 2.2 visualises examples of the discussed grippers.

Grasps that navigate or leverage the environment are a set of contact-rich manipulation primitives.

Elguea-Aguinaco et al. [Elguea-Aguinaco 23] specifically mention how contact-rich manipulation is

a critical component of the changes introduced by Industry 4.0. Broader manipulation and grasping

surveys highlight the importance of collision-rich grasping and extrinsic dexterity [Babin 21, New-

bury 23,Elguea-Aguinaco 23,Suomalainen 22]. Furthermore, exploiting the environment while grasping

is a fundamental skill for any manipulator targeting fabric manipulation, which battles uncertainty and

provides a robust grasping methodology. The human-centric studies and gripper designs discussed in this

section reinforce these statements. Several grippers designed for fabric manipulation target this capabil-
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ity [Donaire 20,Le 13,Koustoumpardis 14]. Thus, any system developed for generalised fabric handling

will likely need such a capability.

2.1.4 Human-Inspired Fabric Manipulation

Human manipulation behaviour and definitions have inspired gripper designs and strategies for fabric ma-

nipulation. Research projects developing or reviewing novel effectors designed to manipulate deformable

materials infer a similar thinking pattern. Supporting statements are made by authors, including Kous-

toumpardis et al. [Koustoumpardis 04] who stated, “The investigation of the human performance must

be the first step on the grippers design process” about fabric manipulation. Le et al. [Le 13] reinforce

this perspective with the quote, “The careful study of how humans handle clothes can reveal the motion

capabilities that are necessary and sufficient to efficiently perform virtually all likely manipulation tasks.”

However, current robotic grippers produced for deformable manipulation do not generalise to various ap-

plications. Nor do they capture a complete set of manipulation skills needed to effectively grasp and sort

clothing in a wide range of environments [Donaire 20, Sanchez 18]. One can argue that observing the

capabilities of previous effectors with anthropomorphic definitions can inform design methodologies,

control requirements and system scope. Beyond grasping mechanisms, research also looks to human

strategies for more complex tasks in fabric manipulation such as folding, as seen in the video dataset

present by Verleysen et al. [Verleysen 20].

Fabric, by nature, is a unique item to grasp. One aspect contributing to this description is the confor-

mity of the object to the grasp action applied, enabling ambiguous wrist orientations and varied grasping

strategies. In contrast, manipulating static objects involves constraining the wrist orientation and grasp

poses to the target object [Feix 15, Roby-Brami 03]. Thus there are various descriptions of approaches

to grasping clothing. One technique involves exploiting the environment while grasping fabric. A con-

tributing factor to human beings’ generalised manipulation capabilities includes the skill of environ-

mental exploitation, as discussed in Section 2.1.3. The taxonomy of Heinemann et al. [Heinemann 15]

derives from this larger body of research by Eppner et al. [Eppner 15] and focuses on the hypothesis that

humans exploit extrinsic contact to balance uncertainty when grasping. Several important conclusions

were observed that apply to the manipulation of fabrics. First, all closing actions exploiting the environ-

ment during a grasp took on a similar form. Second, exploiting the environment can account for visual

deficiencies. Finally, when one considers fabric manipulation, exploiting the environment is necessary

for any generalised manipulator, as fabrics can present themselves in a flattened state requiring such a
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skill. Grippers targeting fabric that consider this capability include the research of Koustoumpardis et

al. [Koustoumpardis 14], Le et al. [Le 13], and Donaire et al. [Donaire 20].

2.1.5 Concluding Remarks

Human-oriented designs and approaches to grasping play a significant role in developing grippers target-

ing fabric handling and engineering broader grasping strategies. This section has discussed the skilful ca-

pabilities of humans regarding fabric manipulation, focusing mainly on grasps that leverage the environ-

ment to ameliorate uncertainty. Previous devices developed have reflected a theme of anthropomorphic-

inspired grasping. Existing taxonomies for understanding human grasp pose and dexterous manipulation

behaviour can assist researchers in developing human-inspired grasping strategies. However, previous re-

search has not investigated robotic fabric grasping with these classification schemes. As a result, current

gripper solutions remain limited and developing generalised solutions could usefully involve anthropo-

morphic classification schemes that identify novel gaps.

2.2 Dexterous Robotic Manipulation

2.2.1 Robotic Grippers

Robotic gripper design is a well-studied and evolving field. Bicchi et al. [Bicchi 00] present an early

survey from the mechanical perspective, which discusses the literature on robotic manipulation through-

out the latter years of the twentieth century. Discussed topics include grasping methods and the complex

contact interactions between the hand and object. At the time of publication, the authors specifically

mention how many manipulators within industrial applications focus on simple grasping behaviour and

not dexterous manipulation. They also discuss enveloping grasps, meaning the grip in which humans use

their fingers and palm to wrap around a target object to grasp and restrain said item. Generally, grasping

involves the static equilibrium of mechanical systems where wrenches are exerted at contact points to

maintain holds over objects. However, factors including friction at the contact points, control aspects

of the manipulator utilised, and kinematic parameters will impact the system’s grip on an object. When

one considers grasping acts involving the environment or dexterous in-hand manipulation, the underly-

ing dynamics are essential in modelling any robot hand. Bicchi et al. [Bicchi 00] also discuss contact

compliance and how such an effect can be challenging to model.

Billard and Kragic [Billard 19] present a recent survey on robotic grasping discussing modern ap-
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proaches and challenges in robotic manipulation. The authors outline existing obstacles in dexterous

manipulation, describing how existing robots fail to demonstrate fine motor dexterity comparable to hu-

mans. In addition, robots face sensing challenges in dynamic environments that include occluded or

unrecognisable objects. Data-driven approaches can encourage robust and adaptive behaviour. However,

training on hardware can be expensive. Thus many researchers fall back on simulated environments. Bil-

lard and Kragic [Billard 19] then discuss two paths, learning manipulation from human observation and

learning from realistic simulations. While both research paths have their benefits, each contains distinct

drawbacks. For example, learning from observation is difficult to generalise, while existing simulators

struggle to replicate friction, deformations, and other realistic physical properties. Thus while learning

techniques can assist in understanding embedded dynamics within manipulation primitives, they are not

a solution for all grasping challenges. They also come with development issues associated with machine

learning techniques such as hyperparameter tuning.

Basic Structures

Grippers can be linkage-based architectures consisting of serial-chain or parallel devices. Simple serial-

chain devices are sequential joint-link pairs that construct a robot body. Such mechanisms have estab-

lished modelling procedures [Corke 17, Sciavicco 12]. Compared to serial-chain manipulators, parallel

mechanisms are more complex with a closed-loop kinematic structure.

Many grippers are also underactuated, referring to systems with fewer degrees of actuation (DoA)

when compared to the degrees of freedom (DoF)3. The benefits of underactuated systems include a re-

duced number of actuators within the system, which simplifies modelling procedures while remaining

capable of enveloping grasps or shape adaption for robust grasping behaviour. Transmission mechanisms

of underactuated systems can also include a wide range of technologies such as pneumatic, linkages and

gearing. A survey by Babin and Gosselin [Babin 21] argues that underactuated systems can effectively

comprise flexibility, simplicity and performance. Billard and Kragic [Billard 19] describe how designing

highly biomimetic hands is a complex task due to the numerous DoF/DoA, the advanced tendon/bone

structure of the human hand, and skin’s sensitive haptic sensing capability. Many anthropomorphic de-

signs currently limit the degrees of freedom/actuation and present a simplified serial-link structure. The

human hand possesses features that are mechanically incompatible with traditional serial-link structures,

and such differences must be accounted for when creating highly anthropomorphic designs. The high

3Some authors refer to the DoF of a TCP frame [Corke 17] or freedom within the mechanical structure [Ma 16].
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level of actuation further increases control complexity.

Alternative Gripper Designs and Characteristics

Babin and Gosselin [Babin 21] discuss alternative gripper designs, such as grippers with compliance

or soft manipulators. Grippers can retain compliant mechanisms involving deformation within specific

joints, eliminating mechanical issues such as backlash or clearance. However, compliant elements can

make kinostatic modelling complex and require further study with Finite Element Method (FEM) anal-

ysis. For example, the prosthetic finger developed by Mutlu et al. [Mutlu 15] required said FEM analy-

sis. Alternatively, soft grippers, manipulators characterised by soft materials, distribute grasping contact

loads over object surfaces to reduce contact stresses. These devices include the RBO hand of Deimel and

Brock [Deimel 16] or the Pisa/IIT Softhand introduced by Catalano et al. [Catalano 14] (Figure 2.3). A

drawback of these soft manipulators is the complex modelling process which cannot utilise traditional

modelling procedures for simple serial-chain or parallel linkage systems. Finally, the last type of gripper

discussed by Babin and Gosselin [Babin 21] are active surface manipulators. These manipulators can

alter the contact point of the target object with actuated contact surfaces such as belts or rotating surfaces

which can provide physical transformations. Alternatively, one can observe mechanisms that utilise the

effect of electrostatic adhesion. Several grippers implement active surface technologies. For example,

the Roller Grasper by Yuan et al. [Yuan 20] was a three-fingered manipulator that could grasp and re-

orient objects with actuated roller fingertips, see Figure 2.3(c). Regarding cloth manipulation, Abe et

al. [Abe 20] and Yamakazi et al. [Yamazaki 21] implemented a robotic manipulator with roller fingertips

to robustly grasp flattened fabric. The fingertips rotate, moving the contact point between the fingertip

appendage and the target garment to improve grasping success. Alternatively, Donaire et al. [Donaire 20]

(a) [Deimel 16] (b) [Catalano 14] (c) [Yuan 20]

Figure 2.3: Examples of alternative gripper designs.
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present a manipulator targeting fabric that retracts a surface with an increased friction factor to improve

grip strength.

There are also various actuation and transmission mechanisms involved in manipulator development.

Standard actuators include electrical, pneumatic or hydraulic devices. Electrical actuators are the most

common modality due to their commercial availability and in-built control schemes. An example of this

availability is the line of intelligent actuators such as the XM-430-350-R actuator [Inc 21], available from

the company Dynamixel. Many manipulators also utilise cable or tendon-driven transmissions, resulting

in lightweight, compliant appendages such as the Yale Openhand Project [Ma 17]. However, Babin and

Gosselin [Babin 21] note how designing such mechanisms requires more complex considerations, such

as retaining tension in the cables.

Sensors

Sensors are common within robotic grasping systems, informing actions such as dexterous manipulation

or classifying held objects. More broadly, sensors provide another stream of data to inform a manipulator

about the current state of the environment. Possible use cases include estimating a wrench exerted at a

manipulator’s tool-centre point (TCP), and detecting physical characteristics of a held object or slippage.

Alternatively, sensors can take the form of simple joint encoders informing the current configuration of

a robotic system. A recent comprehensive review of tactile sensing within the context of robotic manip-

ulation by Yamaguchi and Atkeson [Yamaguchi 19] highlights that sensors applied to robotic grippers

are a separate and broad field of study. Haptic exploration is frequently utilised in robotic fabric han-

dling to deduce clothing features via tactile feedback from sensing modules. For example, Drigalski et

al. [Von Drigalski 17b,Von Drigalski 17a] applied two triaxial force sensors at each fingertip to measure

grasp force and classify materials. The classification process occurred by performing a linear ‘rubbing’

motion between the fingertips. As a result, it classified a wide range of household deformable materials,

including fabric, belts, trash bags and pencil cases. Interestingly, Drigalski et al. [Von Drigalski 17a]

demonstrate that features highlighting the friction co-efficient between objects produced a more accurate

classifier of held objects within their collected dataset.

Similarly, the CloPeMa gripper of Le et al. [Le 13] also presented a two-fingered manipulator that

performed a linear ‘rubbing’ motion between the fingertips for material classification. However, this

end-effector used a multi-modal tactile sensor [Denei 17], made up of a capacitive pressure sensor ar-

ray, microphone and ambient light sensor. The microphone and pressure array interpret data captured
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during the rubbing motion performed by the end effector, and the ambient light sensor validates grasp-

ing success. Finally, specific haptic sensors applied to fabric can provide visual information. Yuan et

al. [Yuan 18] and Luo et al. [Luo 18] use the Gelsight sensor with machine learning approaches to per-

form fabric classification. The Gelsight sensor contains a soft elastomer with an embedded camera to

capture deformations. Such an approach captures the low-level geometry at a high resolution to classify

held garments.

The examples cited above used tactile sensors for classification or grasp success, although sens-

ing extends beyond fabric manipulation within custom gripper development. For example, Kaboli et

al. [Kaboli 16] grasped a range of quasi-deformable materials with triaxial force sensors, targeting ob-

jects such as plastic cups or cardboard rolls. Their system estimates the friction coefficient between

lifted objects and the gripper by opening the fingers until the held item begins to slip. This information

modulates the grasp force. The sensor of the CloPeMa manipulator observed slippage detection through

the microphone component as detailed by Denei et al. [Denei 17].

Slip detection has been a main area of research; Yamaguchi and Atkeson [Yamaguchi 19] describe

slip detection mechanisms from the modalities of force, the centre of pressure and vibrations. They also

describe the typical slip-detect-react process in which the grasp force is adjusted depending on detected

slip parameters. A recent development in triaxial force sensors is the PapillArray sensor presented by

Khamis et al. [Khamis 18, Khamis 19]. This sensor uses a silicon body and pinhole camera to estimate

forces with reflective data produced by deformations of the silicon body. Khamis et al. [Khamis 21] sub-

sequently showed how an array of these sensors could dynamically inform the near-optimal (in their case,

near-minimal) grasp force for a range of held objects of varying weights and other physical properties.

Billard and Kragic [Billard 19] state how the advanced sensing capabilities of human skin also pro-

vide valuable information about forces, temperature and stretch. Traditional manipulators currently apply

force sensors to the fingertips, while sensing in locations such as knuckles or phalanges may be crucial

for more advanced manipulation. Currently, the impressive haptic sensing capabilities humans rely upon

for dexterous manipulation is difficult to replicate and translate into robotic systems. However, research

such as the human-robot interfacing framework suggested by Seminara et al. [Seminara 23] is investi-

gating this topic. The literature indicates that sensors are a key aspect of robotic manipulation and have

been utilised extensively within grippers targeting fabric applications. They also presents a modality that

can assist in learned dexterous behaviour. Therefore, integration of haptics may be essential in grippers

that target this dexterous manipulation problem, depending on the target applications.
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Anthropomorphism

Many manipulators, both within the context of deformable manipulation and robotic grippers in general,

consider the human hand and its dexterous skills the ‘holy grail’ of skilful manipulation [Huang 21].

As described by Babin and Gosselin [Babin 21], anthropomorphism can refer to the size, manipulation

primitives and morphological features (palm and fingers) of a robot manipulator and how such param-

eters compare to the human hand. As manipulators reference or observe anthropomorphic behaviour,

terms for human features such as phalanges are present when referencing mechanical structures [Kous-

toumpardis 14, Salvietti 15]. Some authors explore the topic of anthropomorphic replication; Xu and

Tordorov [Xu 16] present a robot hand replicating the bone and ligament structure of the human hand

while attempting to develop a manipulator with comparable kinematics and dynamics. However, such

a design approach can be intensive, with specialised components created to replicate these human com-

ponents. Cable-driven and underactuated mechanisms are usually present in highly anthropomorphic

designs, such as the grippers of Xu and Tordorov [Xu 16], or Gosselin et al. [Gosselin 08]. Billard and

Kragic [Billard 19] argue for designs beyond human anthropomorphism, targeting other animals, for ex-

ample, the lamprey-based effector of Ku et al. [Ku 20], or even replicating multiple components of the

human hand for novel designs, e.g. using two or more thumbs.

Anthropomorphism can also qualify a manipulator’s capability. For example, a preliminary version

of the GRASP taxonomy [Feix 09] evaluated the dexterous capabilities of the RBO hand [Deimel 16].

The evaluation occurred by replicating grasps from the taxonomy on the developed gripper. Alterna-

tively, anthropomorphic behaviour can inspire specific designs, which is common in grippers addressing

fabric manipulation. For example, the gripper of Koustoumpardis et al. [Koustoumpardis 14] developed

a manipulator with two fingers, a thumb and a palm. An observed human manipulation primitive in-

volving the thumb, index and middle fingers inspired the design. A similar approach saw Shibata et

al. [Shibata 09] use anthropomorphic wiping and pinching motions to develop a grasping mechanism.

Other Considerations and Final Remarks

Manipulation research continues to explore a series of unaddressed parameters and challenges. The

review of Babin and Gosselin [Babin 21] discusses such parameters noting that, inter alia, one can

consider the intrinsic dexterity of robot manipulators, namely, the ability to manipulate objects only

with features of the robotic gripper. Within fabric manipulation literature, intrinsic dexterity can refer

to a ‘grasp gaiting’ act [Borràs 20] where one adjusts the held grasp point of the garment by allowing
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the material to slide between the fingertips [Donaire 20]. Alternatively, Sahari et al. [Sahari 10] present

a manipulator that performs an inch-worm-like motion to adjust the held position on the fabric’s body.

Intrinsic dexterity can also refer to haptic exploration behaviour as previously discussed. In comparison,

extrinsic dexterous behaviour exploits components that are part of the environment or held objects to

enhance manipulation. In the context of fabric this mainly applies to exploiting the environment to assist

with grasping behaviour. There is little or no indication of learned environmental exploitation grasping

using tactile sensing within deformable manipulation. However, extensive research has investigated

using reinforcement learning in contact-rich manipulation tasks [Elguea-Aguinaco 23].

Implementing grippers on robots involves difficulties such as grasp point localisation, motion plan-

ning and manipulation. Grasp point localisation relies on optimal grasping algorithms and scenario

limitations. As Babin and Gosselin [Babin 21] discuss, grasp indices can assess the quality of a localised

grasp point. Algorithms that also consider object parameters and gripper shape can enhance planning.

While motion planning with manipulators can be a complex task, a common way of addressing this

complexity is decoupling a manipulator’s actions to the gripper, as seen regularly in fabric manipulation.

Alternatively, Le et al. [Le 13] presented an environmental exploitation grasping act where the arm and

gripper’s compliant elements work together simultaneously to grasp a garment.

Measuring the capability or effectiveness of manipulators is also challenging. A common approach

is to measure grasp success [Abe 20, Marullo 20], with some authors adding further conditions, such as

holding an object for a specific duration after grasping [Donaire 20, Choi 18]. Newbury et al. [New-

bury 23] attribute the lack of consistent performance metrics to the diversity of hardware, scenarios

and objects involved in grasping. They also suggest using time-based metrics, such as mean picks per

hour, defined as the average number of successful grasps over an hour. Such an attribute may assist in

evaluating a complete system’s grasping capabilities.

Additionally, Billard and Kragic [Billard 19] detail how existing complex manipulation actions in-

clude in-hand dexterous manipulation, navigating cluttered environments, object alteration (cutting/tear-

ing), extrinsic dexterity, complex tool interactions and advanced bi-manual manipulation. They also

detail how robots today can execute repetitive grasping patterns in semi-structured environments. How-

ever, occlusions or transparent objects can make manipulation difficult, additionally, as requirements

change, robots must adapt to new tasks or challenges. Thus multi-purpose grasping solutions require

further exploration. However, these solutions are a multi-modal problem requiring an understanding of

the physical properties of new objects for grasping. Robots can infer this understanding from both vision



28 CHAPTER 2. LITERATURE REVIEW

and haptic sensing, but, this inference is still limited. Current constraints in robotic manipulation involve

the development of grippers as dexterous as human hands, and limitations in cognitive processing to

develop robust and adaptable grasping capabilities.

While one can observe various advances in robotic manipulation, grasping in unstructured environ-

ments remains limited. In industry, common manipulators such as parallel pinch or vacuum manipu-

lators rarely interact with the environment and remain decoupled from their manipulator. Advancing

manipulation could involve optimising designs to handle extrinsic dexterous behaviour. Babin and Gos-

selin [Babin 21] conclude their review by highlighting the importance of utilising compliant elements for

environment collisions, as any custom-designed manipulator should seriously consider the underlying

physical interaction. They also state that decoupled arm-gripper pairs can result in robust manipulation

strategies and design.

2.2.2 Targeting Deformable Manipulation

Introduction

The core aspect of this research focuses on developing a robotic manipulator for fabric manipulation.

Throughout the literature, various specialised robotic gripping devices have targeted deformable manip-

ulation. These devices have been limited to specific tasks and could not target rigid objects [Donaire 20].

Manipulation objectives such as extracting garments from a pile [Le 13], folding laundry [Le 15a], ex-

ploring a garment’s body for haptic information [Von Drigalski 17a] or grasping fabric in a flattened

state [Koustoumpardis 14] have been observed.

To the author’s knowledge, the earliest study into end-effector design targeting fabric manipulation

was presented by Parker et al. [Parker 83], who studied mechanisms such as pin catching (inserting

pins into the fabric and applying pressure), adhesion or vacuum technology. Further research in the

twentieth century included Ono et al. [Ono 91], who created a more anthropomorphic design with a

pincer device that inserted a fingertip between layers. However, these early research projects targeted

limited manipulation strategies, looking at the problem of extracting a flat garment from a neat pile.

A review in 2004 by Koustoumpardis et al. [Koustoumpardis 04] advocated for more anthropomorphic

strategies to grasp materials in the diverse range of conditions that they present themselves.

Before discussing more anthropomorphic designs, it is noted that several research reports present

grippers with technical augmentations to assist with grasping actions, examples include the Mag-Gripper

[Marullo 20] (Figure 2.4(a)) and the DressGripper [Dragusanu 22], which both use electromagnets to as-
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(a) [Marullo 20] (b) [Abe 20] (c) [Ku 20], image sourced from
the relevant media files of the
publication.

Figure 2.4: Examples of grippers with technical augmentations to assist with grasping behaviour.

sist in grasping fabric. Elsewhere, grippers with roller fingertips for manipulation purposes are reported.

Sahari et al. [Sahari 10] presented a single effector with a roller fingertip, among others, for edge tracing

tasks. Another effector design presented by Abe et al. [Abe 20] (Figure 2.4(b)) and Yamazaki et al. [Ya-

mazaki 21] uses a roller fingertip to grasp flattened material from a surface or extract a single garment

from a pile without disturbing the items beneath. A brush-like material surrounded the roller fingertip to

ensure that the friction was appropriate for manipulating the range of fabrics within the project scope.

Another example is the gripper of Ku et al. [Ku 20] (Figure 2.4(c)), who present a soft gripper with

embedded microneedles inspired by the mouth structure of the lamprey fish. The embedded microneedles

assisted with a pinching act while the friction of the grasp and a vacuum mechanism created the holding

force. Their results indicate that such a gripper could robustly grasp materials for delicate manipulations.

Although these designs with technical augmentations are novel, they remain complex in fabrication and

modelling procedures; a key benefit of anthropomorphic designs is the simplified development process.

Commercial manipulators applied to deformable manipulation

Some research has used commercial effectors to address deformable manipulation challenges, usually

with respect to the tasks of intelligent cloth handling, grasp point localisation, state estimation, and mo-

tion planning. Maitin-Shepard et al. [Maitin-Shepard 10] used the PR2 robot with the default grippers for

a towel folding task. Others, such as Kita et al. [Kita 11], utilised the HRP-2 robot in a clothing manipu-

lation task. Further commercial effectors or robots utilised include the Baxter robot effectors [Li 15], the

Barrett Hand [Balaguer 11] [Monsó 12], the Robotiq 3 Fingered Gripper [Ruan 18], the Shadow Hand

manipulator [Twardon 15], the Nekonote robot arm [Moriya 18], a High Speed 3 Fingered Effector [Ya-

makawa 11] and the HIRO robot effector [Yuba 17]. As Borràs et al. [Borràs 20] note, many of these
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research projects utilise what could be a simple two-fingered precision grasp for a wide range of tasks.

Such an observation reinforces the view that a simple pinch or clamp grip can be effective for many

fabric manipulation actions.

Grippers Designed For Fabric Manipulation

Several research projects have created custom grippers to address challenges in fabric manipulation.

These devices can take the form of technically augmented devices, as previously discussed. However,

many designs take inspiration from the human hand while addressing challenges within deformable ma-

nipulation. Such projects make consistent reference to anthropomorphic grasping behaviour, including

the research of the CloPeMa project [Le 13], grippers developed by Ono et al. [Ono 91,Ono 01,Ono 07]

and other authors [Koustoumpardis 04, Von Drigalski 17b, Shibata 12]. The development of grippers by

these authors can be anthropomorphic in appearance, functionality, or behaviour.

For example, Koustoumpardis et al. [Koustoumpardis 14,Koustoumpardis 17], and Ono et al. [Ono 01,

Ono 07] created three-fingered anthropomorphic effectors to mimic the grasping motions of a human

thumb, index and middle fingers. These effectors could manipulate fabric against extrinsic contacts with

EC grasping techniques. Alternatively, some grippers were based on two-fingered precision grasps. For

example, the NAIST M2S OpenHand et al. [Von Drigalski 17b] was a manipulator that had a design

based on a static thumb and index finger and was able to perform haptic exploration with embedded

triaxial force sensors. Another instance of a two-fingered precision gripper was introduced by Le et

al. [Le 13, Thuy-Hong-Loan Le 13] as part of the CloPeMa project. Rather than recreate a human hand,

Le et al. [Le 13] built a simplistic gripper that could perform a subset of motions humans use to manip-

ulate cloth. In addition, the effector had a multi-modal tactile sensor [Denei 17], which would validate

grasp success and perform haptic exploration.

One crucial aspect of manipulating fabric is performing EC grasping behaviour. Several research

projects developing custom manipulators target this task. A common approach was to pin the fabric to

the table before dragging a finger structure along the table’s surface to deform the fabric and produce

a protrusion for grasping. Various authors have used this technique in deformable object manipulation

[Ono 01, Ono 07, Murakami 04, Shibata 12]. An alternative approach applied by Le et al. [Le 13] and

Donaire et al. [Donaire 20] offers another solution, in which a compliant thin fingernail-like appendage

inserts itself beneath the fabric on the environment surface, followed by a clamp grasp.

While some grippers perform haptic exploration for tasks such as classifying held materials, grasp
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gaiting is another function of interest, being the act of adjusting the grasp position on the fabric without

relinquishing the grasp. Within fabric manipulation, such an action is usually performed by adjusting

the grip strength and allowing the fabric to slide between the closed fingertips. Sahari et al. [Sahari 10]

present three grippers that can traverse the bodies of garments using grasp gaiting. These grippers have

alternative fingertip designs to perform this task, namely, a simple pincer gripper, a gripper with roller

fingertips and a gripper designed to move in an ‘inchworm fashion’ across the fabric. Others have also

demonstrated grasp gaiting, including Shibata et al. [Shibata 12], who present a dual sliding prismatic

effector to manipulate a tablecloth, and Donaire et al. [Donaire 20], who adjust the friction between their

gripper and the fabric to enable grasp gaiting by sliding.

Another aspect to consider when manipulating garments is the grasp force. While several projects

detail grasping forces up to 5N [Von Drigalski 17b,Sahari 10], the gripper proposed by Le et al. [Le 13]

can grasp with a strength of up to 40N . Le et al. [Le 13] detail how grasping tangled fabric can require a

maximum grasping force of 30N while Drigalski et al. [Von Drigalski 17b], and Sahari et al. [Sahari 10]

do not consider this scenario. This observation broadly indicates that fabric can often require a reduced

grasping force, but will require the capability to exert greater forces under specific scenarios. Donaire et

al. [Donaire 20] do not detail the grasp force of their manipulator but evaluate the strength by holding a

range of materials with differing weights.

To summarise, many authors have considered the unique skills required to manipulate fabric and have

produced manipulators to address these challenges. The desired task scope, context, and applications

inform the various designs. A significant trend amongst gripper design for garment handling looks to

human manipulation for inspiration of design parameters. However, one can observe that few projects

look in-depth into the literature on human manipulation, but rather, heuristically identify behaviours to

replicate.

2.2.3 Serial-Chain Manipulators

The gripper described in Chapter 4 is a simple rigid body serial manipulator. Modelling of the kinematics

and dynamics of such mechanisms are well documented [Corke 17,Sciavicco 12,Yoshikawa 90]. There-

fore, modelling the gripper follows established procedures to define serial-chain systems. For example,

Bellicoso et al. [Bellicoso 15] present a lightweight serial manipulator for drone-based applications.

Such an approach uses homogeneous transformation matrices and the Denavit-Hartenberg (DH) param-

eters to model serial-chain manipulators. Using the defined DH parameters and kinematic variables,
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one can utilise sequential transforms to determine the relative position of the robot’s tool-centre point

(TCP), or fingertip in this case, from the base of the manipulator. Such an approach is known as For-

ward Kinematic (FK) modelling. Furthermore, a closed-form set of equations or numerical algorithm

can establish the joint positions from the TCP’s position depending on the number of parameters present

within the mechanical system, in an approach called Inverse Kinematics (IK). Such methods represent

the positional relationship between the actuator positions and TCP’s configuration.

The next step this standard modelling process uses Jacobian matrices to determine the relationship

between the velocity of the joints and TCP. When modelling serial-link systems, Jacobian matrices use

partial derivatives from actuator FK expressions alongside matrix multiplication with actuator speeds

to accurately represent the magnitude and direction of the TCP’s velocity. The Jacobian can also be

modified to input desired TCP velocities to calculate required joint speeds. Finally, when modelling

Kinostatics, the transposed Jacobian can also estimate wrenches exerted at the TCP and their relationship

with the applied actuator forces and torques.

A dynamics analysis is the last component of any serial manipulator modelling process. This com-

ponent concerns physical characteristics and the estimation of required torques depending on motion

requirements. Such a calculation involves the dynamic parameters of gravity, inertia and the centre of

mass (CoM) for the various links involved. The Lagrangian method presented by Sciavicco and Sicil-

iano [Sciavicco 12] models this component. The Lagrangian function subtracts the potential energy from

the kinetic energy available within a serial manipulator structure.

2.2.4 Prototyping novel manipulators with commercially available components

As Chapter 4 looks at constructing a novel manipulator with commercially available components, con-

siderations for research that has developed low-cost robots are present. Several projects have pro-

duced legged robotics including Faigl and Čı́žek [Faigl 19], Trivun et al. [Trivun 17] and Bjelonic et

al. [Bjelonic 18]. These projects use actuators produced by the company Dynamixel. These rotational

actuators are available for hobby projects and more advanced research endeavours. These motors gener-

ally use PID loops with a magnetic encoder for position and velocity control. Such devices provide an

immediate actuator with robust control for prototyping robotic systems.

More advanced control mechanisms, including torque and Current-Based Position control, are avail-

able in different models of actuators from Dynamixel. Current-Based Position control is recommended

explicitly for grasping applications as it provides a convenient impedance controller, useful for system
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motion and grasp-force modulation features. One can also observe these actuators in research manip-

ulators, including the manipulator targeting cloth manipulation of Donaire et al. [Donaire 20]. Other

manipulators that also use Dynamixel servo motors include the D’claw presented by Ahn et al. [Ahn 20]

or the universal gripper proposed by Choi et al. [Choi 17].

Additionally, the proposed manipulator created in this thesis also includes a triaxial force sensor

provided by the company Contactile4. This company produces the commercial versions of the sensors

proposed by Khamis et al. [Khamis 18, Khamis 19, Khamis 21].

2.3 Reinforcement Learning

To imbue the novel manipulator in this research with appropriate learned dexterous behaviour, one can

look to Reinforcement Learning (RL) as a possible solution. RL, as described by Sutton and Barto [Sut-

ton 18], is a research field concerning the problem of teaching an agent how to interact within an envi-

ronment. These agents include characters in a physical simulation, robots, mechanical components, or

vehicles. Essentially, the field involves observing the world and teaching the agent to perform optimal ac-

tions through rewards. RL can apply to problems that require intelligent decision-making and responsive

behaviour in dynamic conditions. These factors have made RL a popular approach to intelligent manipu-

lation [Han 23] and contact-rich tasks [Elguea-Aguinaco 23]. The research reported in Chapter 5 focuses

on learning grasping motions that leverage the environment using RL. Therefore, this section of the liter-

ature review discusses how RL has previously produced robust autonomous skills alongside approaches

to achieve these results. Topics discussed include challenges in RL, training methods, algorithms, and

implementation details.

2.3.1 Introduction

Before discussing algorithms applicable to continuous control in robotics, this section briefly outlines

key terms and foundational concepts. A policy in RL terms is a type of controller (πφ) that informs an

agent how to interact within an environment by using the state (s) to derive an action (a). Policies can

either be deterministic, πφ(s) = a, or stochastic, πφ(a|s) = Pπφ [A = a|S = s]. Deterministic policies

derive a single action from a state, while stochastic policies determine an action based on a learned

probability distribution. While both stochastic and deterministic policies can apply to continuous control

4Company information at the time of thesis writing is at the link https://contactile.com/.
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in robotics, stochastic policies can stabilise training [Haarnoja 18b]. However, Haarnoja and colleagues

also saw a performance improvement when switching to a deterministic policy for deployment.

Policies learn to take optimal actions by the maximisation of a reward signal, or maximising the

return, denoted as Gt. One defines the return as the sum of rewards across the trajectory. However the

discount factor γ, a foundational component of reinforcement learning [Sutton 18], penalises rewards

beyond the current time-step. Mathematically, the return can be represented as Gt
.
= Rt+1 + γRt+2 +

γ2Rt+3+. . .=
∑∞

k=0 γ
kRt+k+1. The policy receives a reward value, r, upon every action taken. When

defining interaction between an agent and the environment, the representation involves a sequence of

actions and obtained rewards in time t = 1, 2, . . . , T , with T representing the time at the terminal

(completion) state. Throughout the trajectory, the agent receives rewards by interacting with the world,

therefore learning the optimal policy that maximises Gt.

Usually, one denotes the state, action and reward at time t as st, at and rt. The policy obtains a

reward as it reaches the following state. Thus a whole trajectory, including the terminal state sT , can be

expressed as s0, a0, r1, s1, a1, r2, s2, a2, . . . , sT . This sequence of state, action, reward and state forms

a transition step. While in the state s, the policy takes action a to reach the next step s′ and achieve a

reward r, resulting in the transition step tuple (s, a, s′, r). A terminal state can occur when a constraint

violation occurs, or the trajectory completes a goal ending the task. Tasks following this trajectory type

are episodic, meaning a clear beginning and end to a trajectory exist (known as an episode). Individual

episodes will also not affect others. Alternatively, a trajectory can be continuous, meaning a task or

learned skill does not break down into episodes but instead continues indefinitely [Sutton 18].

There are two classes of RL learning. Algorithms can either be model-based or model-free. A

model in RL acts as a descriptor of the environment. Model-based RL algorithms assume a perfect

world model. Therefore, dynamic programming (DP) techniques or function approximators will learn

the environment’s dynamics model, which is then applied to a control or planning algorithm to maximise

the reward. Model-free RL targets problems where the underlying dynamics of a system are unknown

or where a set of limited parameters (e.g., sensors on a robot) estimate the environment dynamics. Thus,

learning does not depend on a perfect representation of the world. Furthermore, one can classify model-

free approaches as either on-policy or off-policy approaches. On-policy methods use samples from the

target policy (i.e., the actively learning policy) to train the algorithm. In contrast, off-policy algorithms

refer to learning that trains on collected samples or distributions produced from a behaviour policy rather

than the target policy. Sutton and Barto [Sutton 18] provide further information surrounding the model
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within RL.

One can formulate most RL problems using Markov Decision Processes (MDPs). Any state within

an MDP should be Markovian (retaining the Markov property), meaning that the future can be esti-

mated with the current state, regardless of past actions. Essentially, all information within the cur-

rent situation can estimate the future reward. An MDP is represented mathematically as the tuple

M = 〈S,A, P,R, γ〉. The symbols represent a set of states, actions, the transition probability func-

tion, a reward function, and a discount factor respectively. If a complete understanding of the model

or environment is available, solving an MDP becomes a planning problem of directly applying Bellman

equations using dynamic programming algorithms. However, within learned robotics, the model dynam-

ics are often unknown, thus requiring SOA RL approaches. Modern algorithms applicable to continuous,

complex robotics build upon foundational RL concepts, including temporal difference (TD) learning,

Q-Learning, the policy gradient (PG) theorem and actor-critic (AC) frameworks [Sutton 18].

2.3.2 Algorithms

A broad spectrum of modern RL algorithms can apply to solving challenging robotic tasks, including

PPO (Proximal Policy Optimisation [Schulman 17]), TRPO (Trust Region Policy Optimisation [Schul-

man 15]), QT-Opt [Kalashnikov 18], policy gradient methods [Peters 06] or DAPG (Demo Augmented

Policy Gradient [Rajeswaran 17]). However, Ibaraz et al. [Ibarz 21] detail another popular approach to

learning robust skills with a high-sample efficiency using off-policy AC algorithms such as Twin De-

layed DDPG (TD3, [Fujimoto 18]) and Soft-Actor-Critic (SAC [Haarnoja 18c]). These algorithms fall

into the model-free off-policy classification, as they utilise the experience replay mechanism. They also

can effectively apply to problems without a clear model structure or unclear environment dynamics, mak-

ing them suited to learning intelligent control for tasks too complex for a handcrafted approach. These

off-policy approaches have seen success in learning tasks such as locomotion [Zhu 22] and manipula-

tion [Ahn 20].

Initially proposed in 2018, SAC and TD3 remain effective across various robotic applications as

Section 2.3.3 outlines. However, each algorithm remains unique regarding the theoretical framework

that constructs the learning object alongside minor implementation details. TD3 by Fujimoto et al. [Fu-

jimoto 18] presents an expansion of the Deep Deterministic Policy Gradient (DDPG) algorithm [Lilli-

crap 15], which presented a breakthrough of an AC policy gradient algorithm applied to continuous action

space problems. This algorithm targeted a range of tasks using a deterministic policy and demonstrated
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significant improvement over previously existing methods such as Deep Q-Network (DQN, [Mnih 13]).

DDPG contains four neural networks in the algorithm structure, two acting as actor and critic function

approximators alongside two more target variants of these networks.

DDPG combines elements of DQN and the Deterministic Policy Gradient (DPG) algorithm [Sil-

ver 14], with the critic networks updating similarly to DQN, in which a Q-network learns with gradient

descent and a loss function inspired by the Bellman equation. The actor networks update in an analogous

manner to DPG using gradient ascent methods with a loss function based on the total expected return.

DDPG presents several mechanisms to stabilise the learning process, including minibatch gradient up-

dates, in which the learning process samples a user-defined number of transitions from the replay buffer

and takes the mean of the sum of gradients to estimate the objective gradient. To improve exploration,

DDPG also applies noise to taken actions. DDPG also utilised batch normalisation, initially presented

by Ioffe and Szegedy [Ioffe 15], to normalise physical parameter inputs. This method particularly ap-

plies to robotics, whose state and action spaces contain velocity or position features. Finally, DDPG

implements a ‘soft’ target update. Unlike DQN, which freezes the target network for a number of steps,

DDPG smooths the updating action of target networks by slowly tracking the weights of their non-target

counterparts. For convenience, this thesis will refer to this technique as a ‘soft update’ moving forward.

However, DDPG suffers from several limitations, which TD3 [Fujimoto 18] addresses. Simply put,

Q-Learning can generally experience overestimation bias of the value function [Thrun 93]. Furthermore,

TD learning uses a bootstrapping technique to update the value function. Thus, an accumulated error

will occur when estimating the value function if each update retains a small margin of error. Fujimoto et

al. [Fujimoto 18] discuss how these problems persist in DDPG and suggests three significant alterations

to the algorithm resulting in substantial improvements.

The first change is the integration of dual critic networks to evaluate a single policy. Then, while

training the policy, TD3 applies a technique called clipped double Q-learning which takes the minimum

estimation between the two critics, avoiding overestimation. The second change reduces the policy and

target networks’ update frequency compared to the critic networks, which reduces variance. In this case,

the policy, target policy and target critic networks are updated at a lower rate when compared to the critic

networks. The third and final alteration of TD3 is the target policy smoothing regularisation method. TD3

utilises a deterministic policy, so it remains possible that the policy will over-fit to narrow peaks in the

value function. To combat this, TD3 applies a clipped noise term to the actions taken by the target policy

network, which then updates the target critic networks. These proposed changes significantly improved
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the learning capability of AC frameworks and resulted in a SOA method for learning continuous control

tasks.

At the same time TD3 was published, the SAC algorithm [Haarnoja 18b] was also presented. SAC is

an actor-critic algorithm that utilises the maximum entropy framework (MEF), which attempts to succeed

at a task while acting as randomly as possible. SAC achieves this goal by using an objective function

that incorporates an entropy measure term which encourages the policy to explore. A user-defined hy-

perparameter (known as the temperature) determines the impact of the entropy measure on the learning

objective. Haarnoja et al. [Haarnoja 17] previously used the MEF framework while developing Soft

Q-Learning. However, SAC presented the first off-policy MEF AC algorithm making such an approach

unique. SAC has two versions, both from Haarnoja et al.; the first, [Haarnoja 18b] presented the initial

algorithm, and the subsequent article, [Haarnoja 18c] discusses several enhancements. For brevity, this

section only observes the improved version discussed in the more recent article [Haarnoja 18c].

Unlike TD3, SAC uses a stochastic policy. Thus, SAC gives an equal probability to optimal actions

in situations where multiple options are available. SAC consists of components known as a soft policy

(the actor) alongside a soft Q-function (the critic). These components use loss functions that consider the

MEF. For each policy update step, SAC directs the policy towards the exponential of the soft Q-function

by minimising the Kullback-Leibler (KL) divergence [Haarnoja 18b]. The soft Q-function updates via

a loss function that minimises the soft Bellman Residual, which is a variation of the Bellman Residual

that incorporates the entropy regularisation term introduced by the MEF. The refined version of SAC

also takes inspiration from TD3 and uses two independent soft-Q-functions. The minimum value from

these two soft-Q-functions apply when updating the policy in an analogous manner to clipped double Q-

learning. The updating of the target soft-Q-functions also make use of ‘soft updates’ to stabilise training.

Finally, the version of SAC presented by Haarnoja et al. [Haarnoja 18c] noted a limitation in the ini-

tial SAC algorithm in which training success was dependant on selecting the correct entropy temperature

hyperparameter for different tasks. In order to mitigate this issue, the revised SAC algorithm formulates

a constrained optimisation problem, in which the policy should satisfy a minimum entropy constraint

while maximising the expected return. Such an approach tunes the impact of the entropy measure on

the learning objective by adjusting the temperature hyperparameter. This method requires an additional

hyperparameter representing a target minimum entropy threshold.

While TD3 and SAC demonstrate success in learned robotic skills, more advanced algorithms have

recently been released, demonstrating a greater ability to learn various complex tasks and at a greater
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level of efficiency. A recent example is the Temporal Difference learning for Model Predictive Control

algorithm (TD-MPC) by [Hansen 22]. TD-MPC is a framework that learns a task-oriented latent dynam-

ics (TOLD) model alongside a terminal value function using TD learning. Broadly, this algorithm learns

the underlying dynamics of the model that are predictive of reward for shorter trajectory segments with

a value function that guides long-term planning. The resulting algorithm solved complex tasks in the RL

domain, including the Dog environment from the Deepmind control suite [Tassa 18], a 38-dimensional

continuous action space task for which SAC failed to converge to a solution.

This approach of RL with model predictive control (MPC) can also be considered a combination of

model-free and model-based learning. Others have also explored such a concept, including the proposed

LOOP algorithm of Sikchi et al. [Sikchi 22], who similarly extend SAC with a learned model and plan-

ning (with an H-step look-ahead method). Alternatively, one can observe data-augmentation methods

such as DrQ [Yarats 20, Yarats 21] who augment image-based RL tasks with SAC and DDPG, demon-

strating improvements with image-based RL. Another variation on SAC includes meta-learning adjust-

ments [Wang 20b], who propose Meta-SAC, an expansion on the second version of SAC [Haarnoja 18c]

which automatically tunes entropy impact using a meta-learning approach rather than the constrained

optimisation approach presented by Haarnoja et al. [Haarnoja 18c].

While such approaches can significantly improve training, sample efficiency and stability, the pre-

viously discussed TD3 and SAC are established benchmarks and have been repeatedly applied suc-

cessfully to learn robotic skills such as manipulation [Ahn 20, Gupta 21, Schoettler 20] or locomo-

tion [Ahn 20, Zhu 22, Haarnoja 18a]. Many authors initially discuss how these baseline AC off-policy

algorithms can learn specific skills with enough data and the appropriate hyperparameters. Addition-

ally, the actual task of EC grasping, which the proposed manipulator of Chapter 4 learns, remains a

low action-dimension task with a relatively specific desired trajectory. Therefore, SAC and TD3 remain

stable, appropriate solutions to the desired learning outcomes of Chapter 5.

2.3.3 Overview of Learned Robotic Skills

Robots and Learning Skills

Ibarz et al. [Ibarz 21] discuss key lessons and considerations about training robotic systems. While

the authors do not present a comprehensive overview of RL applied to robotics, they provide an in-

depth discussion of previous challenges encountered by an experienced research group when developing

learned robotic systems. Usually, the goal in any RL problem is optimising a controller (referred to as
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a policy in an RL context) to achieve the maximum possible reward while completing a goal action or

operating in a continuous space. However, learning with robots presents several initial barriers, including

cost, safety, hardware considerations, and a learning setup where sensors infer the world state.

Robots present several elements in simulation and hardware which can complicate the learning pro-

cess. Robot actuators will use control methods such as traditional PD controllers, PID gains, torque

control, and impedance control, to move the system to desired configurations. Depending on the ap-

plication, systems usually implement a specific low-level control algorithm for individual components

while performing deep RL training procedures. An example is the ROBEL (Robotics Benchmarks for

Learning) benchmarking suite [Ahn 20], which uses position and velocity PID loop control to learn the

tasks of rotating a valve and locomotion. For many tasks, position and velocity control will suffice for

various applications. However, tasks that are contact-rich require control that can handle external per-

turbations. Varin et al. [Varin 19] explored several contact heavy manipulation tasks, i.e. hammering,

peg inserting and object pushing, against differing low-level control mechanisms such as proportional

derivative (PD), torque, inverse dynamics (ID) and impedance controllers. Across all tasks, their results

indicate that low-level impedance controllers paired best with deep learning algorithms PPO and SAC.

In addition, robotic hardware is known to degrade over time and policies deployed on hardware may

see a decrease in performance. Lifelong learning or online adjustment methods can assist with such

phenomena [Ibarz 21].

Ibarz et al. [Ibarz 21] further discuss case studies and outstanding areas requiring investigation in

robotic RL. The case studies discussed learning manipulation and locomotion, including how off-policy

methods are more sample efficient than their on-policy counterparts, requiring far fewer training steps

throughout learning. One can expect such an effect as off-policy algorithms can learn from the com-

plete data collected across the training process. In contrast, on-policy methods are usually more stable

throughout learning than off-policy approaches. Model-based learning techniques are even more sample

efficient than model-free techniques. However, model-based techniques are less applicable to learned

autonomous skills in a continuous domain due to the perfect mathematical representation of the environ-

ment required.

TD3 and SAC have been widely adopted in robotic learning, with SAC being one of the algorithms

used by the ROBEL benchmarking suite [Ahn 20]. This suite of algorithms and tasks learned skills in

several low-cost robots, the D’Claw manipulator and the D’Kitty quadruped, actuated by Dynamixel

servomotors. As described above, the D’Claw learned how to turn a valve to an appropriate angle, and
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the D’Kitty learned locomotion alongside acts of standing up and reorientation of the body. These tasks

were learned by reading kinematic variables such as joint positions and velocities alongside relative error

to the task objective.

Due to its off-policy implementation, SAC robustly learned policies more efficiently than the other

algorithms on the ROBEL benchmark, highlighting that such approaches can be appropriate for unsu-

pervised learned robotic skills with unknown dynamics and lower-level controllers. Actions given by

these policies in this task were simply the desired joint positions for the robotic platforms. Alterna-

tively, Varin et al. [Varin 19] pursued their analysis of action spaces using a range of kinematic and

dynamic commands, including direct joint torques, desired joint positions/velocities and desired TCP

positions/velocities. In similar research, Beltran-Hernandez et al. [Beltran-Hernandez 20] used SAC to

learn force control with a UR3e robot arm that generated trajectories and tuned optimal position control

parameters.

Using kinematic or dynamic joint states is common across research in learning advanced robotic

skills. Peng et al. [Peng 20] use a combination of previous joint poses and actions taken in the state

vector. In their case, actions were defined as target rotations for a quadruped’s lower-level joint PD

controllers while learning to replicate animal gaits on a robotic platform with PPO. Alternatively, Zhu et

al. [Zhu 22] learn locomotion with TD3 alongside trajectory optimisation techniques for optimal energy

use policies. The action space was control commands to actuator positions using position control, and

the state-space contained parameters from the original ‘Ant’ PyBullet model, including poses, velocities,

Cartesian coordinates and external forces. Alternatively, Wang et al. [Wang 20a] present a learning

problem surrounding mobile manipulation. This project aimed to grasp an object within the environment

using a Husky rover with two UR5 robots. The state was a vector informed by Cartesian coordinate

positions of the object to grasp (inferred from vision modules), the gripper, and robot base frames.

Although PPO resulted in the most stable training procedure and policy, TD3 was the quickest algorithm

to converge to a solution but suffered from a wide variance in evaluation procedures, highlighting the

improved stability on-policy approaches usually see.

Variations exist in robotic learning action spaces, whether using joint positions or Cartesian coordi-

nates calculated with FK algorithms. Ganapathi et al. [Ganapathi 22] discuss how robotic deep learning

projects usually determine whether action spaces should use calculated Cartesian coordinates or joint

spaces using the task context and heuristics. They argue that both details are valuable and embed the

information into deep learning tasks with a method they call Implicit Kinematic Policies (IKP), showing
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improvement or equal performance under testing. RL goes beyond learning specific skills with mathe-

matical robot information inferred from sensors. Ibarz et al. [Ibarz 21] mention how TD3 and SAC have

produced significant results in learning to manipulate using vision. For example, Matas et al. [Matas 18]

used RGB images and proprioceptive information to learn several fabric manipulation-based tasks us-

ing DDPG with enhancements (including elements from TD3). Other research projects have also seen

success with robotic RL using visual data streams [Kalashnikov 18, Singh 19, Zhu 20]. As discussed

throughout this section, SAC and TD3 have successfully learned various robotic skills through vision-

based intelligence and kinematic system response. While some argue whether TD3 or SAC can produce

more robust behaviour, the broad consensus concludes that either algorithm can produce similar results

with optimal hyperparameters. In their research, Yang and Nguyen [Yang 21], and Chan et al. [Chan 19]

note a similar performance between both algorithms.

Robotic Simulations For Deep RL

Ibarz et al. [Ibarz 21] also discuss simulations in the context of deep RL. Benefits include improved

sample efficiency and robot safety, as robots may produce erratic and noisy behaviour upon beginning a

training process. Some approaches learn initially in simulation before fine-tuning behaviour on a real-

world platform [Tan 18, Peng 18, Peng 20, Rao 20]. However, training in simulation before moving to

hardware meets a challenge commonly known as the reality gap, a degradation in performance when

transferring learned policies from simulation to the real world. The reality gap can appear for various

reasons, including the nature of robotic hardware, which is noisy, and factors such as latency and in-

complete system observability impact the deployment of learned policies. The approach of fine-tuning

trained policies on hardware is one method to overcome this degradation but requires a two-step training

process while also handling safety concerns when the transfer to hardware occurs.

Collins et al. [Collins 19] presented research that looked at the behaviour of simulations and at-

tempted to quantify the reality gap. They discuss and evaluate platforms, including MuJuCo, Py-

Bullet and V-Rep (CoppeliaSim). While basic kinematics and control could perform well, simula-

tions demonstrated difficulty replicating complex collision scenarios from the real world. The broader

literature on optimal robotic simulations also reflects that no simulation is uniformly better than its

peers [Chung 16, Erez 15]. Collins et al. [Collins 19] detail how the PyBullet simulation (Coumans

and Bai [Coumans 16]) returned the lowest error in two of three evaluation scenarios.

Other researchers, such as Körber et al. [Körber 21], detail how PyBullet and MuJuCo target Deep
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RL applications and highlight that PyBullet is more accessible to researchers within an academic context.

They also note that PyBullet was stable at simulation speeds above or equal to 7ms. In addition, Collins et

al. [Collins 21] addressed robotic simulations in a broader context evaluating both robotic tasks and envi-

ronment settings. They discuss how simulators such as MuJuCo, Gazebo, V-REP, and SimGrasp can ap-

ply to manipulation. While each has its benefits, including kinematics estimation, dynamics integration,

and ROS compatibility, the open-source PyBullet has specific benefits for deep learning applications,

including accessible benchmarks, RL environments, and compatibility with robotics tools.

Thus for basic manipulation primitives, PyBullet fulfils the criteria for robotic deep RL research, es-

pecially when considering rigid body manipulators with collision handling, which is particularly applica-

ble in the learning process outlined in Chapter 5. Additionally, the simple python API makes interfacing

to ROS a relatively simple coding task [Collins 19]. Additionally, PyBullet can act as an appropri-

ate platform for rapidly deploying and evaluating simulation environments. While Gazebo can provide a

simulation with a direct interface to ROS, PyBullet also provides examples of RL applications, and many

users have noted the simple setup and accessibility of the platform, e.g. Körber et al. [Körber 21].

Regarding PyBullet, many recent RL projects have successfully used this simulator to train locomo-

tion and manipulation policies and transfer them to the real world. For example, Peng et al. [Peng 20]

used PyBullet to learn locomotion and transfer policies to the Laikago robot platform. Tan et al. [Tan 18]

also used PyBullet as their simulator for learned locomotion, which was then directly applied to the

hardware platform. Many additional examples have learned policies through PyBullet before being

tuned or deployed in the real-world [Kaspar 20, Church 22, Matas 18]. As a point of interest, Matas

et al. [Matas 18] target transferring fabric manipulation tasks from PyBullet into the real world using

elements of TD3 and demonstrations.

Methods to Address the Reality Gap

One of the significant sources of error contributing to the reality gap is the nature of hardware commu-

nication, which is asynchronous. Thus, the active policy will dictate actions while new state information

is available. Additionally, the data from sensors may not accurately represent the current state but an

estimated configuration affected by latency or noise, resulting in many RL algorithms experiencing dif-

ficulty upon deployment to hardware. Consequently, asynchronous control and sensor-based estimations

result in non-Markovian systems, which is problematic to the MDP formulation of these problems. The

Markov principle expects actions to lead to new states that encode all the necessary information to exe-
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cute subsequent behaviour, however, these non-Markovian aspects make formalising real-world robotic

problems with an MDP complex.

The formal definition of an MDP states that all information required to decide an action exists solely

in the current state. When taking external information such as previous actions or observations outside

the current state to inform decisions, a solution becomes non-Markovian. Ibarz et al. [Ibarz 21] refer-

ence how hardware consistently presents challenges within learned robotics applied in the world, cit-

ing reasons of partial observability, safety boundaries and unknown dynamics alongside the previously

mentioned issues within real-world communication. In addition, they outline how specific methods are

required to overcome the non-Markovian aspects of hardware. One solution is incorporating real-world

phenomena such as latency into simulations. Alternatively, they suggest adding recurrence to model-free

policies by incorporating a window of observations or appending previous action commands to the state.

Treating RL problems with recurrent neural network (RNN) frameworks formulates the learning problem

as a Partially Observable Markov Decision Process (POMDP). Formalising a problem as a POMDP can

assist with several issues in learning, including the reality gap, a limited estimation of the system model

or complex behaviour dynamics. Xiang and Foo [Xiang 21] present a review of RL within the context of

MDP and POMDP problems.

Meng et al. [Meng 21] reinforce this perspective, describing how partially observable conditions

frequently appear in hardware-based systems. They discuss how POMDPs formally differ from the stan-

dard MDP by altering the traditional mechanics observed. For example, one can represent a traditional

MDP can as the tuple 〈S,A, P,R〉, respectively representing the state space, action space, transition

probability and reward function. At the same time, a POMDP expands this representation in the form of

〈S,A, P,R,O,Ω〉 where the value of O represents an observation space and Ω is an observation model.

The critical difference in these representations is that the agent cannot receive the model state of the

system. Thus an observation is given upon a transition with Ω acting as a transition function.

To address POMDPs, neural network architectures that take in historical data surrounding robotic

behaviour sequences can create robust policies. Meng et al. [Meng 21] present an example of such

an approach which adapted the TD3 algorithm to a novel approach referred to as LSTM-TD3, which

integrated Long Short-Term Memory (LSTM), an artificial RNN architecture. They used this frame-

work to consider the previous states and actions alongside the current observation. They also attempted

variations in function inputs, including past action/observation concatenations. Previous RL approaches

inspired this research and demonstrated that recurrent architectures are well suited to PODMPs. Another
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example is Song et al. [Song 18], who utilise the Recurrent deterministic policy gradient algorithm in

an RL walker challenge. They found that treating the problem as POMDP with a recurrent architecture

performed significantly better than an MDP formulation.

Meng et al. [Meng 21] show how their proposed algorithm, LSTM-TD3, navigated various environ-

ments from the gym library while deliberately violating the Markov assumption by modifying the state

vector with various adjustments. These adjustments included adding noise to the data, dropping data

packets and removing modalities such as sensors or physical information such as velocity. For tasks

such as the ant, walker or hopper virtual environments, TD3-LSTM consistently performed the best. For

the half-cheetah environment, regular TD3 performed optimally under the MDP condition, while TD3

augmented with previous observations in the state space or LSTM layers achieved the best results under

POMDP conditions. Both pendulum environments from the gym library displayed similar results to the

output from the half-cheetah environment. These results by Meng et al. [Meng 21], together with the

broader literature, indicate that for imperfect information coming in, such as real-world robotics, RL

could benefit from treating these projects as a POMDP. While unconfirmed, such a technique may also

assist in overcoming the reality gap.

Within the broader literature, these approaches are applied successfully for various tasks. For exam-

ple, the ROBEL benchmark of Ahn et al. [Ahn 20] observed SOA RL algorithms for low-cost robotics

in the real world. The tasks include moving to a pose, in which the reward was a combination within the

kinematic parameters of joint speed and position. The rewards were given each time step and estimated

by relative error to the goal configuration. For all tasks on these low-cost robots, the observation space

includes the previous actions, moving the problem formulation closer to a POMDP. Peng et al. [Peng 20]

use sequences of past actions and states in their state vector to kinematically replicate animal gaits on the

Laikago quadruped. Usually, including the last action taken in the state vector would violate the Markov

property. However, this line is blurred in robotics as the last actions are usually inputs that impact the

current behaviour of lower-level actuator control mechanisms, thereby impacting the estimated state of

the world as training occurs.

However, other methods suggest addressing the reality gap with improved simulation software.

For example, Ibarz et al. [Ibarz 21] reference techniques such as modelling or accurately replicating

hardware-based parameters, including latency, dynamics and actuator models. Alternatively, domain ran-

domisation has previously shown great success and remains a popular method. Domain randomisation

alters dynamic parameters within the simulation to make a policy robust to such changes. If considering
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visual aspects, one may alter texture and lighting features [Ibarz 21]. For example, a learning process

will randomise friction, mass, and inertia parameters for actions interacting with the environment. An

example of this approach is by Peng et al. [Peng 18], who also combine this approach with recurrent

training methods to produce robust policies.

One also can observe other methods of simulation improvement. For example, Tan et al. [Tan 18]

overcome the reality gap by modelling the actuators and latency responses of a Minitaur research robot.

They also incorporated domain randomisation as part of their effort to overcome the reality gap. The

authors note how domain randomisation, accurate actuator model and latency handling were essential

in transferring locomotion skills directly to hardware. Alternatively, Collins et al. [Collins 20] evaluate

different parameters that can assist in overcoming the reality gap. They detail how joint velocity and

lateral friction heavily influence the reality gap and should not be excessively randomised. They also

recommend running simulations at the default timestep set by the original developers, as a range of

simulator parameters may be reliant on this optimised value.

2.3.4 Enhancing Learning

Improving Learning

While RL with SAC or TD3 can produce robust learned behaviour, there are augmentations to learning

which can improve sample efficiency or stabilise training, such as batch normalisation, briefly introduced

when discussing DDPG in Section 2.3.2. However, further examples are present in the literature. Demon-

strating expert behaviour can improve sample efficiency as shown by Rajeswaran et al. [Rajeswaran 17];

their Demo-Augmented Policy Gradient (DAPG) algorithm improved sample efficiency and produced

robust policies by incorporating human demonstrations into the training process. Zhu et al. [Zhu 19]

used this method on manipulation tasks from the ROBEL benchmark, collecting kinematic motions be-

fore training with a natural policy gradient (NPG) approach. This method can assist in scenarios with

sparse rewards. However, expert collection steps are required to apply such an approach.

Alternatively, one can observe steps to improve the sample efficiency by targeting transitions that

provide the higher expected learning. For example, the prioritised experience replay (PER) approach

[Schaul 15] assigns a weight to each transition in the replay buffer by estimating the TD error. Tradi-

tionally, the replay buffer applies to off-policy model-free approaches and consists of transitions with

the tuple (s, a, s′, r). In the case of PER, this tuple takes an additional term resulting in (s, a, s′, r, |δ|)

with |δ| representing the magnitude of the TD error. PER calculates the TD error upon initially acquir-
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ing a transition and recalculates |δ| every time the learning algorithm samples a transition. A sampling

mechanism ensures that the transitions with a larger TD error magnitude are more likely to be sam-

pled throughout training. Schaul et al. [Schaul 15] demonstrated a significant improvement in sample

efficiency when using PER with DQN and double-DQN. However more hyperparameters require con-

sideration when using PER.

Engstrom et al. [Engstrom 19] present a case study on two popular on-policy approaches of Trust Re-

gion Policy Optimisation (TRPO, [Schulman 15]) and PPO demonstrating that code-level-optimisations

influence policy results more than the algorithm of choice. A similar study, including both on-policy and

off-policy approaches [Henderson 18], assessed the impacts of hyperparameters, rewards, random seed-

ing, evaluation methods, implementations, network architectures and environments. Findings by Hender-

son et al. [Henderson 18] include how hyperparameter selection and configuration are inconsistent across

the literature, and how poor hyperparameter selection can be detrimental to training. Additionally, they

discuss optimal activation functions for neural network approximators in RL. At a high level, they de-

termined that ReLU (rectified linear unit) or Leaky ReLU usually performed the best. However, the

research notes how such a phenomenon was inconsistent across algorithms and environments. Random

seeding and trial numbers are other areas discussed, with an experiment [Henderson 18] demonstrating

the wide variance different seeding can cause on an algorithm with static hyperparameters.

Henderson et al. [Henderson 18] also present an experiment demonstrating how significant reward

scaling can impact training. However, they also show that layer normalisation can further impact any

reward scaling. Such phenomenon, in part, can be attributed to how gradient-based methods react to

large output scales, which can cause saturation and inefficiency in training procedures. In the original

article on DDPG by [Lillicrap 15], batch normalisation (Ioffe and Szegedy [Ioffe 15]) was used to nor-

malise inputs throughout training to generalise across task domains and rewards. This method allowed

the authors to avoid manually scaling the features (including actions and rewards) for each task. The crit-

ical takeaway from Henderson et al. [Henderson 18] and Engstrom et al. [Engstrom 19] is that reward

scaling, hyperparameters, normalisation techniques, network structure, activation operations, and code

level improvements can play a significant role in algorithm success. Therefore, all integration details and

learning configurations should be displayed when comparing approaches.
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Reward Crafting

Reward creation is a crucial aspect of RL formulation. Ibarz et al. [Ibarz 21] discuss possible approaches

to creating a reward function, including reward shaping, sparse rewards or learning the reward itself.

Reward shaping is simply structuring a reward mechanism that guides a policy towards a goal. An

example of such an approach is using task error as a negative reward. Ahn et al. [Ahn 20] use the

error from the goal with augmentations for both a quadruped and manipulator robot to guide policies

to minimal error conditions. Tasks involved include standing, orienting and walking for the quadruped,

and manipulation tasks such as turning a valve for the manipulator. Using goal error is common in deep

learning research tasks [Varin 19, Gu 17]. Such an approach, while effective, will not enable robots to

generalise to other tasks and usually remains a limited or specific policy. However, it remains a viable

method for learning certain skills on hardware platforms.

Alternatively, sparse rewards are another possible avenue where reward signals only occur on task

completion. This scenario was investigated by Rajeswaran et al. [Rajeswaran 17] who presented DAPG

to collect demonstrations before training the policies. This approach proved beneficial as the tasks ad-

dressed in this research included tool use, object relocation and environment manipulation with a 24 DoF

robot hand. As rewards only occur sparsely, these tasks were complicated, and off-policy approaches

such as DDPG failed to converge to a solution, whereas DAPG provided a dataset through which the

agent could successfully learn behaviour. Akkaya et al. [Akkaya 19] combined sparse and shaped re-

wards in which a shadow hand performed dexterous manipulation and completed a Rubik’s cube with a

single hand. This approach used PPO with sparse rewards upon task completion or failure. For example,

dropping the cube would penalise 20 points. Shaped rewards at each timestep reflected the error from

the present state to the goal configuration.

Another example of sparse rewards [Kalashnikov 18] presented the QT-Opt framework, an RL frame-

work targeting generalised grasping that uses a single reward to indicate success when grasping. The

reward derives from an image subtraction method, by which the gripper drops a grasped object onto

the workspace. If the gripper had been unsuccessful in the grasp attempt, then the workspace image

would remain unchanged, and the image subtraction would reflect this unsuccessful attempt. Other ap-

proaches attempt to learn the reward function, also known as inverse learning. For example, Singh et

al. [Singh 19] present a method providing a learning system a series of images representing successful

completion. SAC then learns several tasks, including stacking books or draping a cloth over a box. Fi-

nally, the policy queries a human supervisor at a user-defined interval to determine if specific images
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gathered throughout training represent a successful completion. The authors did not create a specific

reward function; instead, the policy learned what states defined success from images while training.

Several components from the literature have altered traditional reward signals to be more adaptable

to unknown dynamics and broader task scope. For example, Ma et al. [Ma 21] explored using space-

time bounds in a reward function. The authors saw robust, trained policies on varying simulation tasks

by constraining the acceptable error region and terminating the learning episode if boundary violations

occurred. The authors also noted an improvement in sample efficiency. Furthermore, improvements oc-

cur when relying on space-time bounds for more complex tasks compared to traditional imitation reward

schemes that do not necessarily always result in an optimal controller. One can also note how these

authors approached feature extrapolation combined with space-time bounds, e.g. making a character

perform a back-flip was achievable by dictating the position and orientation of the character’s CoM.

Hindsight experience replay (HER) [Andrychowicz 17] presents a mechanism to learn from failure.

For example, if an agent kicks a soccer ball and misses the goal by two meters under sparse reward

conditions, traditional RL would not reward this behaviour or provide any indication that this sequence

of events was partially correct. However, HER introduces methods that learn from failure and ask, what

if the goal was two meters to the left? Would an improved reward be given under such a condition? The

concept of HER is the integration of goals while training on a series of transitions, estimating rewards

with the same trajectory but under multiple conditions. A set of goals, G, are defined such that the

replay buffer takes an input of (St, At, Rt, St+1, g) where g ∈ G. This modification diversifies the

collected data to improve the training process. While it assists policies in finding sparse rewards, another

application of HER is to provide some form of user-defined control over a policy. For example, the

pushing task involves pushing a puck to the desired location on the table, which is an arbitrary location

on the workspace [Andrychowicz 17]. One can also note that the goal parameter parses through the actor

and critic networks.

Andrychowicz et al. [Andrychowicz 17] evaluate HER with a robot performing pushing, sliding

or pick-and-place actions. They demonstrate how their method outperforms DDPG without HER as

opposed to including HER. Interestingly, HER showed significant improvements in the original paper,

where sparse rewards were present. However, in shaped reward problems, little to no improvement was

observed. Two reasons, outlined by Andrychowicz et al. [Andrychowicz 17]. Firstly, the natural discrep-

ancy between optimising shaped rewards and success conditions makes utilising such an approach ques-

tionable, and secondly, shaped rewards penalise inappropriate behaviour, hindering exploration. HER
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can apply to both TD3 [Singla 20] and SAC [Lee 21].

Measuring Performance

The final aspect of RL to discuss is how agents measure success. How do researchers compare and

validate that specific hyperparameters, reward formulations or algorithms result in the most robust agent

or policy? At a high level, the answer is the policy that maximises the reward. For example, Meng et

al. [Meng 21] evaluate their algorithms by performing the training process under four different seeds

and then gathering the average of 10 evaluation procedures across a range of environments and state

configurations. However, such an approach indicates how well an agent has learned to obtain a reward.

As Henderson et al. [Henderson 18] and Engstrom et al. [Engstrom 19] discuss, this performance can

be sensitive to hyperparameters, implemented code optimisations, random seeding or reward structures.

If evaluating a new algorithm to existing SOA approaches, one should evaluate many environments

and execute multiple training runs under different seeding as a minimum baseline approach. As code

optimisations are often present in many different code bases, transparency regarding these features is

essential when publishing results.

Henderson et al. [Henderson 18] specifically mention how these issues make simply detailing the

maximum return, including averages across seeded trials, inadequate when comparing algorithms or

discussing a training procedure. Instead, they recommend several approaches to validate a policy’s per-

formance, including bootstrapped confidence intervals. Such an approach gathers a wide range of eval-

uation episodes of a policy under random seeding and then sub-samples returns for several iterations to

build confidence intervals of the policy’s performance. Henderson et al. [Henderson 18] suggest such an

approach as policy performance can vary extensively under random seeding. Additionally, they suggest

a bootstrap power analysis to evaluate if a broader sampling process needs to occur.

Furthermore, Chan et al. [Chan 19] present various metrics for evaluating algorithm reliability. There

are several elements to consider when measuring this aspect of an algorithm. For example, stable incre-

mental learning is preferable during learning as opposed to noisy reactions to positive signals. Unstable

learning can result in swings in performance and unpredictable deployment issues. Additionally, as pre-

viously noted, training across runs should remain stable. For example, training under various seedings,

varying hyperparameters, and implementation details should still robustly learn policies. If they do not,

then the algorithm will be unpredictable to various dynamics and may impact further applications and

research. Finally, a learned policy after training should result in robust behaviour across multiple rollouts.



50 CHAPTER 2. LITERATURE REVIEW

Chan et al. [Chan 19] detail statistical tests that enable robust evaluation of various RL algorithms

against various environments. However, they also found that algorithms with the best median perfor-

mance, usually TD3 or SAC, were not necessarily the most reliable given the metrics they developed.

Such an observation remains in line with the previous statements of Ibarz et al. [Ibarz 21], who detail

how these off-policy approaches can be unstable compared to their on-policy counterparts. Nevertheless,

despite these possible intricacies, many robotic behaviours have successfully learned unique skills using

SAC and TD3, even with simple evaluation procedures, as discussed in Section 2.3.3.

2.3.5 Conclusion

Reinforcement learning encapsulates the required technology for robots and advanced physical agents

to learn policies that can execute specific tasks in simulation and hardware. At the same time, limita-

tions remain, specifically in generalisation and adaptation to unforeseen circumstances. Nevertheless,

robotic systems can learn behaviour that can overcome unknown dynamics and react appropriately to en-

countered difficulties. Furthermore, off-policy actor-critic algorithms have seen such outcomes achieved

on low-cost robots. While the reality gap still presents significant challenges, domain randomisation

and other optimisation techniques can enable learned policies to execute intelligent skills on hardware

platforms.

2.4 Research Gaps

This literature review has surveyed topics surrounding robot fabric handling, including grasp charac-

terisation, gripper design, and deep learning. In exploring these aspects, several research gaps have

become apparent. Firstly, previous research has taken note of the advanced manipulation capabilities of

humans when designing grippers or fabric manipulation strategies. As a result, some research projects

designing manipulators replicate human morphological aspects or behaviours. However, these designs

remain limited in application and capabilities, or contain complex features in order to provide generalised

grasping capabilities. When exploring the literature, grippers that contained human-inspired elements

did not comprehensively investigate human grasping of fabric from a hand-centric perspective. Such

a study could lead to novel design inspirations and highlight previously ignored manipulation aspects.

Therefore, the first identified research gap concerns a lack of complete understanding regarding anthro-

pomorphic hand-centric fabric manipulation. Chapter 3 addresses this limitation by surveying previous
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grippers with anthropomorphic hand-centric taxonomies to discover novel unique aspects in design and

behaviour, these observations are then validated with a user study which observes humans performing

a range of fabric handling tasks. This results of this first investigation inspire the conceptual gripper

design, providing the groundwork for Chapter 4.

A simple yet generalised manipulator for textile waste sorting does not exist. This observation is

the second gap identified from the literature review. This thesis takes the conceptual gripper formu-

lated from the anthropomorphic study of Chapter 3 and creates a prototype using established modelling

techniques and a fabrication process. The fabricated device improves upon the SOA by remaining a

serial-link manipulator with four actuators and no complex components, while offering a combination of

grasping skills previous devices do not. Finally, the remaining research gap concerns the act of environ-

mentally constrained grasping. Grasping while exploiting environmental constraints is an essential skill

that humans use as part of their diverse manipulation capabilities, and some grippers from the literature

target such a skill. However, present manipulators that target this capability can only perform such an

act from specific positions, and usually with pre-programmed trajectories. The anthropomorphic survey

of Chapter 3 describes specific limitations in environmentally constrained grasping capabilities of previ-

ous devices. Grasping in this manner is a complex, contact-rich skill that can become more complicated

depending on the nature of the interaction and the environment dynamics. An unexplored avenue to over-

coming these complexities is the use of reinforcement learning. The exploration of Chapter 5 addresses

the translation of observed human behaviour into a reward function.
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Chapter 3

A Human-Inspired Investigation of

Dexterous Fabric Manipulation

3.1 Introduction

Designing end-effectors for fabric manipulation remains a complex challenge involving parameters such

as the desired application, intended capabilities and technical feasibility. As outlined in Section 2.2.2,

previously developed devices remain limited in functionality, and do not generalise to broader appli-

cations. In addition to limited applicability, previous grippers implement technical augmentations to

assist grasping behaviour. For example, the Mag-Gripper [Marullo 20] embedded an electromagnet in

the fingertips to attract metal components within the fabric while grasping, and the roller-fingertip de-

vice [Abe 20] used actuated rollers in contact with fabric to pull material into a grasp. Alternatively, a

lamprey-inspired manipulator [Ku 20] used a combination of microneedles and a vacuum mechanism

to assist with delicate fabric-handling tasks, while other devices used tendon-driven components [Kous-

toumpardis 14, Von Drigalski 17b]. Mechanically compliant joints are another observed complex design

feature present in the grippers of Le et al. [Le 13] and Donaire et al. [Donaire 20].

As existing devices remain limited in application, or embed complex components into their design,

recent research has attempted to qualify manipulation primitives within robotic fabric manipulation to

inform gripper design scope and outline desired manipulation skills. Borràs et al. [Borràs 20] present a

framework for defining grasps of fabric from an object-centric perspective by studying previous devices.

Such a framework enables researchers to outline desired grasp contacts and inform the required geome-

tries of novel grippers. This framework was instrumental in developing the gripper presented by Donaire

53
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et al. [Donaire 20]. Borràs et al. [Borràs 20] specifically refer to their framework as necessary, given

that existing grasp taxonomies are insufficient for characterising textile manipulation. Such an assess-

ment particularly applies to object-centric definitions, as fabric displays significantly different physical

characteristics when compared to static objects. However, while the object-centric perspective can assist

in informing manipulator development, it does not directly correlate to a gripper’s behaviour and abil-

ity, as Bullock et al. [Bullock 12] mention. Bullock et al. [Bullock 12] further note that hand-centric

studies can directly compare the capabilities of different grippers and formalise manipulation primitives.

Viewing grippers under an anthropomorphic hand-centric lens can provide a viewpoint that inspires grip-

per design through formalised manipulation definitions and human morphological features. A common

trend in the literature is that specially designed grippers take anthropomorphic inspiration from human

morphology or behaviours. However, these projects usually took heuristic human observations to justify

a design approach [Koustoumpardis 14, Von Drigalski 17b, Shibata 09].

Considering the human-inspired designs from previous research, and the lack of hand-centric gripper

studies within fabric manipulation, this chapter poses the question; ‘Can discussing previous grippers

from a hand-centric, anthropomorphic viewpoint reveal unique limitations and highlight novel design

inspirations?’ This chapter refers back to the Double Diamond Design Thinking framework from Sec-

tion 1.4 [Herath 22] to address this query. This framework provides a methodology to derive novel and

optimal solutions for indeterminate problems or gaps using the steps of discover, define develop, and de-

liver. A discovery process has already occurred in Chapter 2, identifying the need for a generalised robot

manipulator solution that can apply to pick and place sorting of diverse textile waste streams. In addi-

tion, the discover phase identified a research gap where no previous grippers had thoroughly investigated

robotic fabric manipulation using hand-centric classification schemes.

Existing anthropomorphic hand-centric grasp and manipulation taxonomies use neuroscientific, bio-

mechanical, and robotic definitions to formally describe hand-centric behaviour. Early definitions for

broad grasp characterisations came from the medical publication of Napier [Napier 56], who initially

presented the power or precision classification. Furthermore, the neuroscientific publications of Iber-

all et al. [Iberall 86, Arbib 85, Iberall 97] investigated human grasping to further develop concepts that

could refine grasp classification. Cutkosky [Cutkosky 89] used these concepts to develop a classifi-

cation scheme for human manipulation behaviour that could translate to robotic agents. More recent

publications [Feix 15, Bullock 12] use these concepts from varying fields to define anthropomorphic

manipulation configurations and grasping motions while focusing on robotic applications.
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The core activity of this chapter uses two state-of-the-art taxonomies to study existing grippers and

construct a comprehensive understanding of dexterous manipulator skills required within fabric manip-

ulation. Such an understanding will lead to a generalised manipulator suitable for textile waste sorting.

The neuroscientific grasping definitions come from the GRASP taxonomy of Feix et al. [Feix 15], while

the IHDM taxonomy of Bullock et al. [Bullock 12] defines anthropomorphic manipulation primitives.

Under the Double Diamond development scheme, this investigation falls under the define step, which

collects data to inform a novel solution. By observing a subset of described grippers, this chapter builds

fabric-specific versions of the GRASP and IHDM taxonomies to describe the grasp poses and dexter-

ous actions of previous robotic grippers manipulating textiles. In addition, these details are mapped to

the surveyed devices while discussing further information, including applied grasp forces and techni-

cal details. The define step concludes by discussing novel insights derived from this anthropomorphic

hand-centric survey.

The develop step of the double diamond approach splits into the substeps of ideate and prototype.

The ideation process uses observations from the anthropomorphic, hand-centric discussion to identify

present limitations and previously unexplored grasping solutions. Given the identified gaps, this chap-

ter formulates a novel anthropomorphic design that addresses previous limitations. Unlike previously

described devices, the proposed gripper derives from a single anthropomorphic configuration within the

GRASP taxonomy, the lateral grasp. This grasp is a simple configuration that only uses the thumb and

side of the index finger to formulate a grasp. A single serial-chain robot structure can replicate this

configuration as Chapter 4 demonstrates. The hypothesis in formulating such a device is that a human

can perform all the necessary dexterous skills to manipulate fabric while constrained to this grasping

configuration.

A user study is presented that asks human participants to manipulate garments under various kine-

matic constraints to validate such a hypothesis. As the study continues, instructions to participants limit

aspects of dexterous manipulation allowed while handling the fabric. The results validate that the lateral

grasp is sufficient for the desired waste sorting applications. A discussion of further observations from

the neuroscientific and psychological studies is also present before outlining the final design to model

and fabricate. This study and discussion conclude the ideate phase of the design thinking process. Chap-

ter 4 then addresses the prototype sub-step, which develops iterations of the novel gripper while refining

the design. The prototyping process also leads into the deliver step, which deploys the manipulator onto

a robotic arm within the HCT robotics lab at the University of Canberra.
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3.2 Manipulator Selection

The grippers surveyed throughout this chapter are from an identified subset of the literature that fulfils

a specific criterion. Selected devices come from academic research projects that built grippers explic-

itly designed for fabric manipulation, and they all have in-hand dexterous capabilities beyond simplis-

tic grasping, including haptic exploration, environmentally constrained (EC) grasping, or grasp gaiting.

These constraints result in the listed manipulators of this section excluding commercial manipulators. As

Borràs et al. [Borràs 20] and the literature discussed in Section 2.2.2 highlight, commercial or general

grasping devices applied to intelligent robot garment handling were limited to only using point-to-point

grasps and lacked the features to execute more refined in-hand dexterous behaviours. Section 2.2.2

elaborates on how dexterous intrinsic and extrinsic skills are essential in the complex challenge of gener-

alised fabric manipulation, further cementing the logic for omitting commercial devices limited to basic

grasping.

In addition to these conditions, grippers with technical augmentations to assist with grasping be-

haviour are also omitted from the survey. This requirement prevents gripper designs that use non-

anthropomorphic grasping mechanisms from being included in this discussion. Examples include de-

vices with electromagnets to attract metal components [Marullo 20, Dragusanu 22], microneedles with

a suction mechanism inspired by the lamprey fish [Ku 20], or roller fingertips with a brush-like coating

to assist with the grasping of flattened materials [Abe 20, Yamazaki 21]. As the purpose of this survey

is to qualify previous grippers designed for fabric manipulation under human-centric definitions, the in-

clusion of devices with these complex features would be problematic to describe with the taxonomies of

Bullock et al. [Bullock 12] and Feix et al. [Feix 15]. Additionally, technical augmentations, including

the examples given above, can increase the design complexity and following the discussion of Section

2.1, the research of this chapter assumes that human-inspired designs are best suited to discovering a

novel generalised grasping solution.

Considering the given constraints, a total of eight research projects aligned with the desired scope of

discussion were identified. While the scope of these eight projects surveyed can initially seem limited,

this survey aims to establish the requirements of a generalised human-inspired gripper solution. Focusing

on the directly relevant grasping skills and human-comparable grippers can establish unique gaps and

design scope. The following subsections present a description and figure of each device. However,

some authors do not provide comprehensive information, including applicable grasp forces and limited

modelling information, as several projects target different applications and do not consider the full scope
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of fabric manipulation. This section makes an effort to include all relevant information about each device.

The list below assigns an integer to each manipulator as a reference throughout the chapter.

1. CLOTHILDE Project Gripper [Donaire 20]

2. CloPeMa Gripper [Le 13, Le 15b]

3. 3 Fingered Under-Actuated Gripper [Koustoumpardis 14]

4. NAIST M2S Openhand Gripper [Von Drigalski 17a, Von Drigalski 17b]

5. Cloth Gripper Based On CAM Mechanism [Koustoumpardis 17]

6. 3 Fingered Anthropomorphic Gripper [Ono 01]

7. Dual Pincers Prismatic Gripper [Shibata 12]

8. Prismatic Edge Tracing Based Grippers [Sahari 10]

8.1 Basic Gripper

8.2 Roller Gripper

8.3 Inchworm Gripper

3.2.1 Gripper 1 - The CLOTHILDE Gripper

The most recent device published, Gripper 1, was presented by Donaire et al. [Donaire 20] as part of

the European project CLOTHILDE. The author’s inspiration for this device came from the limited gen-

eralisation of previous manipulators developed for fabric manipulation. In particular, the authors discuss

how many previous devices can only perform pinch grasps mimicking a finger(s) and thumb structure.

They acknowledge that two-fingered pinch grasps can perform various tasks, including grasping crum-

pled clothes or manipulating garments bi-manually to lay out and fold materials. However, Donaire and

their colleagues argue that more refined manipulation actions require a broader range of dexterous skills.

Thus, they targeted moving folded clothes, folding a T-shirt, tracing an edge and more generalised ma-

nipulation. In order to construct this manipulator, they created an initial prototype controlled by a human

user with rubber bands for actuation to evaluate a series of desired grasp configurations and geometric

properties.
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The resulting device was a two-fingered manipulator that could split the lower finger into two sub-

fingers (an abducted state), creating a plane-like structure within held garments (see the lower image in

Figure 3.1). The lower finger also had compliant joints to safely collide with the environment with a thin

structure to slide underneath clothing on a surface. Two Dynamixel XM430-W210 servo-motors actuated

motions within the fingers. Finally, the upper finger contained a contact friction alteration mechanism

based on the device described by Spiers et al. [Spiers 18]. A silicon pad could retract and extrude from

the fingertip, increasing friction between the fabric and the manipulator. Such a feature increases grip

strength via friction when extruded. If retracted, a reduction in friction enables the device to slide across

a fabric’s body in a grasp gaiting act. Donaire et al. [Donaire 20] also discuss how the manipulator

is ill-suited to rigid objects. Thus, they mention further plans to add additional movement to the thumb

appendage (f1 in Figure 3.1). Device evaluation occurred with human operators performing arm motions

while the gripper executed dexterous acts. A grasp strength evaluation also took place by holding fabrics

with various additional weights.

Figure 3.1: Gripper 1 [Donaire 20]
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3.2.2 Gripper 2 - The CloPeMa Gripper

Another gripper from an earlier European research project, Clothing Perception and Manipulation (CloPeMa),

was presented in a range of articles by Le et al. [Le 13, Thuy-Hong-Loan Le 13, Le 15b]. The CloPeMa

project focused on manipulating garments, emphasising recognition, unstructured picking/extraction of

garments, and garment folding with applications in a domestic setting. Therefore, one area of inves-

tigation within the CloPeMa project was developing a new robot gripper design that could fulfil these

requirements, henceforth referred to as Gripper 2. Regarding considerations within the design, the au-

thors outline navigation of environmental constraints, geometric considerations, and target items for

grasping and grip strength. In order to address environmental constraints, a variable impedance actuator

controls the stiffness of compliance in the fingers during operation. They also mention how simplicity

of the manipulator was a primary objective. Thus the overall structure mimics a precision grasp inspired

by an index thumb grasp pose. The proposed mechanism and modelling process for the variable compli-

ance of the fingers is presented by Le et al. [Le 15b]. From the outset, the authors also required Gripper

2 to perform haptic exploration with a rubbing motion. Other considerations in the design include the

geometric proportions of the device, ensuring that the manipulator could, for example, hold materials of

varying thicknesses with appropriate spacing configurations.

Additionally, the fingers needed to be thin enough to slide under held materials while performing EC

grasping. While EC grasping, the compliance in the fingers would increase to navigate collisions with

the surface while the thin finger appendage slides under an edge of the fabric. In order to gather informa-

tion about the targeted garments for manipulation, the creators of Gripper 2 develop a ‘reference laundry

Figure 3.2: Gripper 2 [Petrı́k 15]
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heap’ based on sales data to benchmark target manipulation objects. Additionally, Le et al. [Le 13] scope

extraction and grasping forces to ensure the device has an adequate grip strength for generalised cloth

manipulation. To scope these requirements, Le and colleagues conducted a human-observation study

where participants used a glove with force sensors and held garments to inform the strength require-

ments for grasping clothing generally and in entangled conditions. The key takeaways from such a study

found that for an object weighing 5N , one requires a maximum extraction force of 35N alongside a

maximum grasp force of 30N . The resulting manipulator derived from these requirements was an indus-

trial device visualised in Figure 3.2. Finally, a sensor at the fingertip consisted of a capacitive pressure

sensor array, microphone and ambient light sensor. The microphone and pressure array interpret haptic

exploratory actions, and the ambient light sensor validates grasping success [Denei 17]. Publications

by Le et al. [Le 13, Thuy-Hong-Loan Le 13, Le 15b] elaborate on the design, modelling and evaluation

procedures for further information.

3.2.3 Gripper 3 - Three Fingered Underactuated Manipulator

Gripper 3 was introduced by Koustoumpardis et al. [Koustoumpardis 14]. The device broadly mimics the

anthropomorphic structure of the human hand with a palm, thumb, index finger and middle finger. The

authors sought to replicate human-like manipulation primitives and created a manipulator with several

anthropomorphic features. The targeted application of this manipulator was to perform EC grasping.

Koustoumpardis et al. [Koustoumpardis 14] reference behaviour where the thumb pins fabric to a surface

before using the index and middle fingers to drag along the environment surface, deforming fabric into

Figure 3.3: Gripper 3 [Koustoumpardis 14]1
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a grasp. The developed prototype was a three-fingered manipulator that used the non-actuated thumb to

detect collisions with the environment surface, alongside two fingers actuated via tendons to HS-85MG

servo-motors hosted within the main chassis. The authors present kinematic and kinostatic analyses

alongside fabrication details in their article.

The thumb component only contained a single compliant joint, using a torsional spring, to safely

collide with the environment surface before EC grasping took place. Torsional springs were also present

in the tendon-actuated components to define a default position. In order to detect successful grasps,

metallic laminates acting as insulators were present in the thumb and finger components as part of an

electric circuit. Such an approach was practical for their grasping experiments, which involved grasping

flattened fabric in five scenarios. While performing this experiment, the authors saw that the motions fail

when grasping a material with low friction. Such phenomena could occur for several reasons, including

pre-programmed trajectories that exert an inadequate normal force on the table or a low friction factor

between the manipulator and the target fabric. Koustoumpardis et al. [Koustoumpardis 14] suggest

placing silicon overlays on the fingertips of the gripper to increase the friction between the hand and

garments.

3.2.4 Gripper 4 - The NAIST M2S Openhand

The NAIST M2S OpenHand, Gripper 4 [Von Drigalski 17b], was a precision type gripper with two

fingers. The design extended the model M2 design [Ma 16] at the Yale GrabLab. A unique aspect of this

device was the innate ability to switch between modes of under-actuation [Ma 16]. Gripper 4 represented

a precision grasp structure with a static thumb and a two-link finger actuated by two tendon-driven servo-

motors. The creators of this gripper outline several goal capabilities of tucking fabrics into small spaces

(e.g., as required in bed-making), active perception to determine grasp success, and dexterous grasping

alongside in-hand manipulation. In addition, the device could sustain substantial axial loads on the

static thumb appendage for tucking fabrics. Other capabilities included tactile feedback, relative sensor

motions and flat fingers [Von Drigalski 17b].

In order to determine grasp success, a triaxial force sensor was present on both fingertips of the

manipulator. Thus, a rubbing motion inferred friction information from the sensors, determining grasp

success. In addition, Gripper 4 performs three basic manipulation primitives of grasping, sliding (grasp

gaiting) and tucking. The authors also mention increasing the friction factor on the gripper surface if

1Figure 3.3 was sourced from the associated media of the article by Koustoumpardis et al. [Koustoumpardis 14].
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Figure 3.4: Gripper 4 [Von Drigalski 17b]2

heavier objects require manipulation. Finally, the authors evaluate the device by observing the grasp

forces at various actuator positions and tracking the feedback of the force sensors while performing

haptic exploration. Some limitations of this article are outlined by the authors, including errors in sen-

sor positions while tracking grasp strength, and the inability to perform EC grasping. Future research

avenues suggested by the authors included modifications to enable EC grasping and automation of the

tucking task.

3.2.5 Gripper 5 - CAM-Follower Mechanism

Based on the CAM-follower mechanism, Gripper 5 was a second gripper produced by Koustoumpardis

et al. [Koustoumpardis 17]. Like Gripper 3, this manipulator is a three-fingered device designed to grasp

fabric in a flattened state using the environment. The authors outline several required features of this

manipulator for grasping flattened clothing in a range of states, i.e. grasping from corners, edges, and the

centre of the fabric’s body, or grasping in ‘folded-over’ configurations. Additionally, they require this

effector to be small enough to go on a mobile robotic system and to be actuated by a single servo motor.

From an anthropomorphic viewpoint, the creators describe this manipulator as a thumb and middle finger

pair that move vertically to pin the fabric, while the index finger in the centre rotates to grasp the mate-

rial. As this system only uses a single rotational actuator, all fingers are attached to a single shaft with

CAM mechanisms that enable movement of the fingers. Koustoumpardis et al. [Koustoumpardis 17]

2Figure 3.4 was sourced from the associated GitHub repository, https://github.com/naist-robotics/naist-openhand-m2s, of
the article by Von Drigalski et al. [Von Drigalski 17b].
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Figure 3.5: Gripper 5 [Koustoumpardis 17]

outline some preliminary kinematics of the manipulator alongside an evaluation procedure. The final

manipulator was a 3D printed device that used springs to make the pinning fingers compliant alongside

undefined overlays to the fingertips. A preliminary evaluation occurred where the device attempted to

grasp various materials while performing acts including EC grasping and unfolding.

3.2.6 Gripper 6 - Three Fingered Anthropomorphic Manipulator

Gripper 6 was an anthropomorphic device [Ono 01,Ono 05] also utilised in a study by Ono and Takase [Ono 07].

This gripper consisted of a middle finger, index finger, palm and thumb, making it the most complex

device in terms of actuators and degrees of freedom. Per images presented in the original descrip-

tion [Ono 01], the size of this device is comparable to a human adult’s hand, albeit with some pro-

portional differences. The authors model this device as several serial-link structures where the distal

interphalangeal joints (the ‘final’ joints) in the non-thumb serial links do not independently actuate but

passively link with the previous joints for actuation. In total, this gives the system nine degrees of free-

dom (DoF) with seven actuators.

Due to Gripper 6 drawing significantly from anthropomorphic inspirations and the numerous DoF,

this device remains capable of a diverse range of anthropomorphic poses, thus allowing the manipulator

to grasp fabric with various motion strategies. In the description of Ono et al. [Ono 01], the authors target

the extraction of fabrics laid on top of each other. They note the complexity of this task as involving

contact friction, regular forces between the fabric layers, and the manipulator’s interaction with the top
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Figure 3.6: Gripper 6 [Ono 07]

layer. They also highlight how the resulting fabric configuration after open-loop robotic manipulation

can result in substantially altered configurations. Finally, they evaluate two motions, in which the index

finger drags inwards into the palm for a grasp, and another drags the thumb into the side of the index

finger. Ono and Takase [Ono 07] expand on this research by further studying ideal motions and points

on the fabric to grasp.

3.2.7 Gripper 7 - Prismatic Sliding Manipulator

A series of articles by Shibata et al. [Shibata 08, Shibata 09, Shibata 12, Shibata 16] introduce and use

Gripper 7, which consisted of two sub-grippers, or clamps, on a long prismatic actuator. The target

application of this device was to perform EC grasping, unfolding, and a specific spreading-out motion

for placing material on a surface. One can also note that bimanual manipulation skills inspired these

target applications for this single gripper. This actuator had 4 degrees of freedom, with the two clamp

grippers moving vertically for grasping and releasing fabric between the fingertips; each clamp gripper

could also move horizontally along the rail. To execute EC grasping, the manipulator would move the

clamps to the outer extremes of the prismatic rail before using pre-programmed trajectories to place the

clamps against the flattened fabric on the table. Then, the clamps would slide inwards while in contact,

creating a protrusion with the fabric. The authors also embed rubber pads on the lower surface of the

clamp devices to increase friction between the fabric and the manipulator.

The authors also establish pre-programmed traversing length parameters that allow the manipulator

to perform EC grasping motions that result in a stable and predictable protrusion. However, these values
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Figure 3.7: Gripper 7 [Shibata 12]

are derived manually for individual fabrics. Such an approach will not be generalisable to a broader

context when using materials with diverse mechanical properties. When unfolding, Gripper 7 grasps

the protrusion with both clamps and then performs a grasp gaiting action by moving outwards along

the rail, letting the fabric slide between the clamped grasp. It remains unclear what grasp force was

applied to enable grasp gaiting. Finally, an exploration where this device applied a ‘placing’ motion was

assessed [Shibata 12]. However, this task did not influence the overall design. Gripper 7 is also physically

the most prominent device of the described subset of grippers, with a width of approximately 742.2mm.

Thus, the strategy for grasping and unfolding could almost be considered a bi-manual manipulation with

multiple grasp points and two sub-grippers within the system.

3.2.8 Gripper Set 8 - Garment Traversing Manipulators

The series of grippers, 8.1, 8.2 and 8.3, were developed by Sahari et al. [Sahari 10] who focus on the task

of edge tracing or grasp gaiting. Each device was modified to perform grasp gaiting in a slightly different

manner. Gripper 8.1 is the ‘basic gripper’, which remained a simple open-close device controlled by a

servo-motor. This device was capable of a grasping force of approximately 5.472N and contained strain

gauges at the fingertips to measure grip strength. Infrared sensors were also present to validate if a fabric

was within the fingertips. Secondly, Gripper 8.2 is the ‘roller gripper’, being a device that expands on

Gripper 8.1 by integrating roller fingertips and what the authors describe as ‘inner fingers’. The roller

fingertips are spur gears freely rotating on a roller bearing to assist grasp gaiting, while the inner fingers

are present to hold clothing securely. Both strain gauges and infrared sensors are present. This variant
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has a reduced grasping strength of approximately 0.93N . Finally, Gripper 8.3 is the ‘inchworm gripper’.

This device is significantly different to grippers 8.1 and 8.2, as it contains two sub-grippers or clamps, one

of which is static in position while the second can move along a prismatic rail (Figure 3.8). Additionally,

this device has three actuators: the first moves one of the clamps along the rail, and the others operate

the opening and closing motion of both the sub-clamps. The two clamp devices retained strain gauges

and infrared sensors, and this manipulator could grasp with a force of approximately 3.33N . The edge

tracing task targeted in this research involves a second robot holding a point known as the ‘first corner’,

and these manipulators must perform grasp gaiting to move to the ‘second corner’.

Gripper 8.1 performs this task by applying a user-defined force on clothing as it slides the fabric

between the fingertips to reach the desired configuration, with feedback from a vision system and the

sensors in the fingertips. However, the authors identify an issue where Gripper 8.1 cannot backtrack

along a grasp gaiting trajectory due to complications related to the fabric’s configuration or gravitational

forces. Gripper 8.2 performs a similar action, however the roller fingertip reduces the friction between

the fingers and the fabric, enabling this manipulator to backtrack along the trajectory if necessary. While

Gripper 8.2 improves the manipulation task over Gripper 8.1, the clothing can still fall away from the

grasp.

The design of Gripper 8.3 combats this issue by allowing the manipulator to grasp clothing firmly

while performing grasp gaiting. Such action occurred in an ‘inchworm’ fashion by holding the clothing

with one clamp, opening the second, sliding along the clothing before grasping, moving the clamps

together and then repeating this ‘inchworm-like’ action. The authors note how this technique eliminates

the need for force control. In order to evaluate the devices, the robots manipulate a single square piece

Figure 3.8: Grippers 8.1, 8.2 and 8.3 [Sahari 10]
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of fabric with all three grippers performing the grasp gaiting motion 30 times. The authors saw that

Gripper 8.3 returned the highest success rate. However, each device used a slightly modified algorithm

to perform the manipulation, possibly influencing the results of the manipulation comparisons.

3.2.9 Final Remarks

The manipulators described here present a range of capabilities beyond the simple grasping of fabric. For

example, some target in-hand dexterous skills, while others target grasping motions to exploit the envi-

ronment. Further than these discussed skills, one can observe that various grasping forces and mechanical

elements are present. An overarching topic of interest in these grippers is the diverse approaches to EC

grasping. For example, some use compliant mechanical setups to collide with the table safely, while oth-

ers use pre-programmed trajectories with various methods of modifying the friction between the fabric

and the manipulator. Another point of interest was how these grippers highlight the role of friction within

in-hand dexterous manipulation and EC grasping of fabric.

3.3 Taxonomies for Anthropomorphic Manipulation

In order to establish a consistent description of the grippers’ capabilities, anthropomorphic hand-centric

taxonomies are used to classify behaviours and grasp configurations. These anthropomorphic frame-

works derive from the GRASP taxonomy [Feix 15] for grasp pose comparisons and the IHDM taxon-

omy [Bullock 12] for dexterous manipulation actions or sequences. Whereas Chapter 2 gave a brief

overview of these taxonomies, the following content presents an in-depth description and outlines their

applicability to formalising dexterous manipulation primitives that qualify both the grasp pose and dex-

terous actions of manipulators. However, the original taxonomies contain elements that do not apply to

fabric manipulation. Therefore, this chapter creates smaller, fabric-specific versions of the GRASP and

IHDM taxonomies which utilise only a required subset of grasp poses and manipulation capabilities.

3.3.1 Addressing Grasp Poses

Parameters for Grasp Definition

Defining the parameters by which one can make anthropomorphic comparisons to robotic manipulators

remains complex, with the mechanical designs of the evaluated grippers differing significantly from the

human hand both functionally and physically. However, abstract anthropomorphic hand-centric defi-
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nitions allow one to make comparisons to grasp poses regardless of the physical characteristics of the

robotic manipulator. At a high level, one can classify any grasp as a precision or power grasp. For power

grasps, an increase in surface contact and a static pose are vital characteristics. Alternatively, precision

grasps are refined and capable of sensitive in-hand dexterous manipulation. Examples of these grasp

types include holding a cricket bat at the handle for a power grasp, and writing with a pen for a precision

grasp. Finally, some grasps contain elements of both power and precision, also known as an intermediate

grasp. These three options of power, intermediate and precision are used in the GRASP taxonomy as the

first of four elements to classify anthropomorphic grasp poses.

The second concept is Virtual Fingers (VF), being abstract representations of hand surfaces providing

an opposition force per a definition provided by Iberall [Iberall 97]. Depending on the grasp configuration

and direction of forces applied within the grasp, defining VFs can occur at the palm, a group of fingers

or single digits. The third element relates to the direction of force applied within a grasp, called the

opposition type. When one applies a prehensile grasp to any object, there are usually at least two VFs

involved in the interaction exerting forces against each other. Opposition types refer to a feature that can

describe the direction of force a grasp holds relative to the palm (usually represented with a coordinate

frame) and three possible labels, as listed below.

• Pad opposition - Referring to a grasp between the thumb and fingers where contact occurs parallel

to the palm, see Figure 3.9A.

Figure 3.9: A visualisation of VF and Opposition Types, Iberall [Iberall 97].
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Figure 3.10: The human thumb in an abducted (left) or adducted (right) position [Feix 15].

• Palm opposition - Referring to a grasp between the fingers and palm. Where contact is perpendic-

ular to the palm, see Figure 3.9B.

• Side opposition - Defining a grasp where contact points on the hand surface are in directions

transverse to the palm, see Figure 3.9C.

These principles and grasp types were published in various descriptions throughout the 1980s by Iber-

all and colleagues. Iberall et al. [Iberall 97] provides a succinct summary of these concepts and their

applications, and Figure 3.9 displays a visualisation of both VFs and opposition types. The fourth el-

ement used by the GRASP taxonomy is the feature of thumb adduction/abduction. The rotation of the

carpometacarpal (CMC) joint in the thumb appendage can be classified as either adducted or abducted;

Figure 3.10 provides a visualisation of these positions. Feix et al. [Feix 15] provide the first known

example of using the thumb rotation as a classifying feature and, along with the previously described

features, its use a as descriptor within the grasp taxonomy.

The F-GRASP Taxonomy

Feix et al. [Feix 15] presented a comprehensive framework for defining grasp poses from a survey of

previous studies discussing human grasps translated to robotic agents. For a complete visualisation of

the GRASP taxonomy, see Figure 2.1. To apply this framework to the set of grippers presented in

Section 3.2, this chapter creates a fabric-specific version (the F-GRASP taxonomy) that outlines the

grasps utilised in deformable manipulation (Figure 3.11). This set of grasp poses describes the array

of configurations seen from grippers addressing fabric manipulation. The level of granularity presented

in the original taxonomy is sufficient for deformable manipulation, and no further grasp definitions are
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Thumb 
Abduction

Thumb 
Adduction

1. Palmer Pinch
Precision Grasp
Pad Opposition
2 VF

3. Prismatic Finger
Precision Grasp
Pad Opposition
2-3 VF

2. Tip Pinch
Precision Grasp
Pad Opposition
2 VF

6. Parallel Extension
Precision Grasp
Pad Opposition
2-3 VF

5. Lateral
Intermediate Grasp
Pad Opposition
2 VF

4. Palmar
Power Grasp
Palm Opposition
2-3 VF

Figure 3.11: The F-GRASP taxonomy, an adapted form of the GRASP taxonomy, derived from Feix et
al. [Feix 15].

required. An immediate observation is that the F-GRASP taxonomy requires only a limited range of

anthropomorphic grasps. Figure 3.11 shows that only six grasps from the original 33 of the GRASP

taxonomy were needed. Further details surrounding how these grasps apply to the grippers of Section

3.2 are present in Section 3.4.1.

3.3.2 Addressing Dexterous Manipulation

Defining Dexterous Manipulation of Fabric

The framework for classifying dexterous and in-hand manipulation was originally proposed by Bullock

et al. [Bullock 11, Bullock 12]. A binary tree based on a series of parameters defines in-hand dexterous

manipulation and contact descriptors surrounding a manipulation task. Actions are classified by the

contact nature and motion parameters from a hand-centric viewpoint, enabling the definition of various

robotic end-effector sequences of manipulation. Five parameters define a dexterous manipulation action

as listed below. The abbreviations indicate whether the parameter is active and apply to Figure 3.14.

• Contact/No Contact (C/NC) – Refers to whether an interaction is making contact with an item or

the environment.

• Prehensile/Non-Prehensile (P/NP) – An interaction with a single contact point represents non-

prehensile interactions, while multiple contact points represent a prehensile action. Alternatively,

if the grip can stabilise an object regardless of external forces, it is also considered prehensile.
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• Motion/No Motion (M/NM) – Refers to an interaction where movement relative to a world coor-

dinate frame occurs.

• Within-Hand/Not Within-Hand (W/NW) – If a motion is present, this parameter describes whether

the movement comes from the wrist or occurs within the manipulator.

• Motion at Contact/No Motion at Contact (A/NA) – If contact and motion are present, this pa-

rameter details whether contact is significantly translating or rotating a held object concerning

coordinate frames based on the contact points.

The resulting binary tree that constructs the IHDM taxonomy can express the complexity of the ma-

nipulation while describing the key aspects (Figure 3.12). While alternative taxonomies discuss grasps or

specific manipulation primitives, Bullock et al. [Bullock 12] provide an abstract description of anthropo-

morphic behaviour without relying on object properties. While effective for a range of actions, Bullock

Figure 3.12: The original IHDM taxonomy of Bullock et al. [Bullock 12].
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Figure 3.13: An expansion to scenarios 14 and 15 of the IHDM taxonomy (Figure 3.12), which describes
the rotation and translation of within-hand manipulations.

et al. [Bullock 12] also acknowledge that more complex behaviour requires multiple labels, thus describ-

ing the sub-actions within a manipulation. An example given by Bullock and colleagues includes typing

on the phone with a thumb. Such an interaction would involve a prehensile, no-motion manipulation

(action 6 from Fig. 3.12) of holding the phone, combined with the non-prehensile/motion/within-hand

task (action 12 from Fig. 3.12) of typing with the thumb. Additionally, the IHDM taxonomy provides

an expansion classification scheme under scenarios 14 and 15 from Figure 3.12. These scenarios refer

to situations where an object is translated or rotated during a within-hand manipulation. Figure 3.13

presents this expansion describing the direction of within-hand manipulations.
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The F-IHDM Taxonomy

Similar to the way in which the F-GRASP taxonomy was defined, a significantly reduced version of the

IHDM taxonomy called the F-IHDM taxonomy (see Figure 3.14) defines fabric manipulation actions

specifically. This version uses components from both the initial binary tree (Figure 3.12) and the direc-

tion within-hand descriptors (Figure 3.13). Some actions from the initial binary tree are not present, as

the subset of grippers did not perform these descriptive actions while manipulating fabric, resulting in

a more compact representation. As an example, a stationary non-contact manipulation (scenario (1) in

Figure 3.12) merely describes a stationary manipulator, not in use or waiting for conditions to operate.

Thus, it does not add previously unknown information while describing fabric manipulation primitives.

For simplicity, describing a gripper moving to a pose throughout a manipulation can be described under

action (1) NC-M-NW per Figure 3.14. The classifications in the F-IHDM taxonomy can describe var-

Not Within-Hand(NW)

Within-Hand(W)

Contact (C) Non-Prehensile(NP)
No Motion(NM)

(2) C-NP-NM-NA
e.g. Holding with a

single VF

No Motion at Contact(NA)

No Motion at
Contact(NA)

(7) C-P-M-W-NA
e.g. Writing

Defines the direction of within hand manipulation
Refers to Scenarios 7-8

No Contact (NC)
Motion(M)

Not Within-Hand(NW)

(1) NC-M-NW
e.g. Waving

(4) C-P-NM-NA
e.g. Holding a still

object

No Motion at Contact(NA)
No Motion(NM)

Prehensile(P)

Motion(M)
Motion at Contact(A)

(3) C-NP-M-NW-A
e.g. Haptically

exploring a surface
with the palm

Not Within-Hand(NW)
Motion(M)

Non-Prehensile(NP)

Motion at
Contact(A)

(8) C-P-M-W-A
e.g. Reorienting

pencil

No Motion at
Contact(NA)

(5) C-P-M-NW-NA
e.g. Turning a

doorknob

Motion at
Contact(A)

(6) C-P-M-NW-A
e.g. Sliding along

hand rail

Figure 3.14: The F-IHDM, an adapted form of the IHDM taxonomy, derived from Bullock et al. [Bul-
lock 12].
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ious capabilities of the previously discussed gripper subset, including EC grasping, haptic exploration,

flattening, grasping and grasp gaiting. Additionally, only the direction components from Figure 3.13

are used to describe motion direction for within-hand actions. Rotational descriptors are not included as

fabric conforms to an applied grasp and held garment rotation will rarely apply. Section 3.4.2 discusses

these skills with definitions from the F-IHDM taxonomy.

3.3.3 Application Towards Fabric Manipulation

These two taxonomies independently capture different aspects of anthropomorphic dexterous manipula-

tion. As Bullock et al. [Bullock 12] suggest, combining the IHDM taxonomy with a grasp classifier can

aptly describe grasp pose and behaviour throughout manipulation sequences. This suggestion drives the

taxonomy discussion, observing and comparing how manipulators designed toward fabric manipulation

approach their desired applications. The F-GRASP taxonomy, Figure 3.11, provides definitions that can

be applied to a manipulator’s pose while holding fabric. The F-IHDM taxonomy, Figure 3.14, provides a

series of classifications to describe manipulator behaviour throughout a manipulation sequence. As a ma-

nipulator moves from a stationary position to grasp the fabric, assigned tags can formalise the stages of

manipulation. For example, moving toward fabric would be classified as (1) NC-M-NW before grasping

the fabric with a two-fingered pinch grasp using the (8) C-P-M-W-A action. After or during the manip-

ulation, poses from the F-GRASP taxonomy can describe the manipulator’s configuration while holding

garments. Bullock et al. [Bullock 12] go on to suggest that one could observe correlations between grasp

pose and manipulation behaviour. The desired outcome of this chapter is establishing a simple gripper

design by understanding the grasp poses previous grippers use and their dexterous skills. The F-GRASP

and F-IHDM taxonomies provide a framework to survey previous devices developed for deformable ma-

nipulation, discovering gaps in the present state-of-the-art. These gaps then inform the requirements to

build a novel manipulator targeting fabric recycling applications.

3.4 A Treatise on Anthropomorphically Defined Grippers

This section presents a formalised anthropomorphic investigation of the surveyed grippers, beginning

with the effector pose and the grasping forces seen across manipulators. Such a step uses definitions

from the F-Grasp taxonomy (Figure 3.11). Next, descriptors from the F-IHDM taxonomy (Figure 3.14)

describe dexterous manipulation behaviour observed throughout the investigated grippers. Alongside
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these discussions, this chapter also describes the technical details and modelling methods used in previ-

ous devices’ development. Finally, an overview of the various manipulators’ capabilities and behaviour

highlights critical takeaways and observations to consider when developing a novel robot manipulator.

3.4.1 Grasping

Grasp Poses Observed

When defining the actual grasp poses the evaluated manipulators adopted, one can see only a limited

range of grasps, as shown in Figure 3.11. As some manipulators move away from an anthropomorphic

form, other considerations inform the pose equivalent based on alternative characteristics. These features

include fingertip contact regions, gripper motions and components’ positioning. Some grasps defined in

the taxonomy can have small but unique differences when applied to the manipulators, for example, the

Palmer Pinch (1) and the Tip Pinch (2) poses (Figure 3.11). Under the F-GRASP taxonomy these grasps

can be considered the same, as they remain a Precision Grasp, Pad Opposition, 2VF and thumb abduction

grasp. While the differences remain minimal, one discrepancy is the region of the index fingertip in

contact with the thumb. Palmer Pinch (1) will press the fingers symmetrically together while Tip Pinch

(2) presses the finger and thumb together at an acute angle. Most of the discussed grippers utilise some

precision grasp, partially due to some designs mimicking the thumb and index finger. Grippers 2 and 4

both use only a precision grasp with two virtual fingers. However, Gripper 2 exhibits fingertip contact

characteristics similar to the Palmer Pinch (1) grasp while Gripper 4 more closely resembles the Tip

Pinch (2) pose.

This distinction in fingertip contact also describes the difference in grasp pose taken between manipu-

lators such as Gripper 1, Palmer Pinch (1), and Gripper 3, Tip Pinch (2). Gripper 1, when grasping, tends

to align the fingertips as they symmetrically press against each other. In contrast, Gripper 3 moves the

fingertip into the thumb-like appendage at a pose consistent with Tip Pinch (2). These grippers can also

press two virtual fingers into the thumb or the held garment, capable of the Prismatic Finger (3) grasp.

However, Gripper 1 uses the Prismatic Finger (3) grasp in a unique manner. While three virtual fingers

were present, with the contact points similar to a Prismatic Finger (3) pose, the original authors [Don-

aire 20] proposed using this grasp more like a plane. The split lower fingers create a geometric plane that

allows for specific manipulations, including folding clothing or holding folded garments without losing

the folded configuration. While this grasp pose is analogous to the Prismatic Finger (3), this section

highlights how Gripper 1 uses this kinematic configuration in a unique method while manipulating fab-
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ric. In Figure 3.15, the symbol
∏

denotes this grip creating a virtual plane, a reference originally used

by Donaire et al. [Donaire 20].

The most diverse Gripper in terms of possible grasping configurations is the anthropomorphic three-

fingered device, Gripper 6, as also noted by Borràs et al. [Borràs 20]. The original development of

Gripper 6 [Ono 01] details several specific configurations of the manipulator’s grasping poses, which

align to the grasp poses of Tip Pinch (2), Prismatic Finger (3), Palmer (4), Lateral (5) and Parallel

Extension (6). The grippers 3 and 6 attempt to replicate the anthropomorphic structure of the human

hand with a palm, thumb and multiple finger appendages. The other effectors used simple precision

grasps of Tip Pinch (2) (Gripper 5) and Palmer Pinch (1) (Gripper 7 and Gripper set 8).

Interestingly both grippers 7 and 8.3 present a device where a rail controls the movement of two sub-

clamp devices back and forth. While one could consider this grasp pose a unique single-hand grasping

configuration, the limited applicability of both devices and the non-anthropomorphic nature of such a

pose makes defining such an act both complex and redundant. Additionally, the inspiration for Gripper

7 came from a bimanual manipulation primitive. Thus the grasp assigned to these devices considers

each sub-clamp a grasp in a bimanual manipulation rather than a single device. Figure 3.15 shows the

discussed grasp poses alongside the grasp forces, which are addressed in the next section.

Grasp Forces

A wide range of grasping forces are present within the evaluated devices, but only a limited number of

reports detail their effector’s applied grasp force. For example, as described in Section 3.2.2, Gripper 2

used a human observation exercise to evaluate grip strength requirements and found their manipulator

should be capable of a maximum grip strength of ∼ 30N to extract a garment weighing 500g with an

extraction force of ∼ 35N . These requirements derive from considering extracting clothing from an

entangled state. Gripper 2 was adopted as an industrial-type device capable of a maximum grasping

force of 40N [Le 13], and a reduced grasping force of up to 10N when performing haptic exploration on

a garment [Denei 17,Le 15b]. The remaining grippers explicitly presented significantly reduced grasping

forces between 0-5N . Gripper 4 was capable of a maximum grasping force of about 4.7N , while the

devices in Gripper Set 8 were capable of a range of grasping forces up to approximately 5.5N . However,

these grippers were limited in scope towards in-hand-dexterous manipulation and holding scenarios.

They did not explore the entangled garment extraction scenario Gripper 2 evaluated, indicating that a

reduced grasping force may be applicable for most generalised cloth manipulation tasks.
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Figure 3.15: A summary of the grasping characteristics of the surveyed devices.

Grasp force is not the only parameter determining grip strength. Friction also plays a role. Several

devices within the surveyed grippers present mechanisms to increase the friction between the held fabric

and manipulator, thus increasing the grip strength. For example, Gripper 1 uses an embedded mechanism

in the fingertip that extrudes and retracts a silicon pad, thus adjusting the friction between the effector and

held fabric and changing the grip strength. As garments can be diverse in their physical and mechanical

characteristics, it can be challenging to define precisely how this mechanism improves grip strength.

The authors of Gripper 1 [Donaire 20] evaluate this device by observing the duration and success when

holding fabric at various weights. Their manipulator held three different fabric items: a towel, a T-shirt

and a silk item with additional weights ranging up to 250 grams, while the silicon pad was retracted and

extruded. When the end-effector was in a high friction state (the pad extruded), stable grasping occurred

with payloads up to a total weight of approximately 200g. However, when holding silk, a material with

a lower friction coefficient, the device could only hold the fabric indefinitely at a weight of 70.5g. When
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Gripper 1 retracts the silicon pad, the target application is a grasp gaiting act that allows the material to

slide through the fingers. Similarly, Gripper 8.2 attempted to reduce the friction between the clothing

and manipulator to allow for grasp gaiting behaviour. The original authors of Gripper 8.2 discussed how

an inner finger was present to perform a robust grasp when a firmer grip was required.

From the surveyed devices, it appears that clothing manipulation is a task that, depending on the

context of the manipulation primitive, can require a wide range of grasping forces up to 30N . Many

surveyed devices exhibit a limited grasping force of up to 5N , possibly due to target applications that

only consider manipulating a single item or light garments. Alternatively, hardware or design limitations

could be responsible for the reduced grasping forces. The only device that exhibits a more significant

grasping force is Gripper 2, which specifically considered clothing in a tangled extraction scenario.

However, this grip strength reduces to a maximum of 10N for haptic exploration tasks on a garment.

Such an observation indicates that a manipulator targeting fabric manipulation should be capable of

at least temporarily sustaining high grasping forces to handle entangled extraction scenarios or heavy

garments. However, for most straightforward tasks, reduced grasping forces up to 10N should remain

sufficient. Many devices also note the significant role that friction plays in grip strength, and make

technical augmentations to adjust the friction while grasping. However, the mechanisms to alter the

friction seen in the reviewed subset include complicated components such as roller fingertips or pad

extrusion fingertips. Such elements add to the complexity of device design and can unpredictably interact

with the various mechanical properties of different textiles, as exhibited by Donaire et al. [Donaire 20].

A more direct solution would be modulation of the grip strength as demonstrated by Le et al. [Le 13].

3.4.2 Dexterous Skills within Fabric Manipulation

Grasping clothing with environmental constraints

Fabric can present itself in states which make the initial grasping action difficult. As previously de-

scribed, EC grasping allows humans to combat uncertainty and perform a robust grasping motion. While

in a flattened state, fabric requires this collision-rich skill during manipulation. From the subset of grip-

pers described in this chapter, one can observe two broad techniques of EC grasping applied. This

research identifies those methods as biomimetic or insertion grasping, as visualised in Figure 3.16.

Biomimetic grasping is an action that involves dragging a finger across flattened fabric, producing a

protrusion in the fabric’s body for the effector to grasp. Alternatively, an insertion approach applied by

grippers 1 and 2 could also perform EC grasping by sliding a thin fingernail-like appendage between the
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(a) An example of biomimetic grasping. (b) An example of insertion grasping.

Figure 3.16: Examples of two grasping techniques that exploit the environment.

fabric and environment surface, followed by a clamp grasp on either side of the fabric’s body.

These methods offer differing benefits and suffer from distinct limitations. Before elaborating on

these aspects, this section defines the pipeline of manipulation for these techniques via definitions from

the F-IHDM taxonomy (Figure 3.14). To visualise the process of a biomimetic grasping act, Figure 3.17

presents an image with Gripper 3 performing a biomimetic grasp on a towel using definitions from both

taxonomies as previously derived. Note that the tag exC denotes situations where environment surface

contact is taking place.

In Figure 3.17, biomimetic grasping occurs in a situation where all fingers are in contact with the

towel, and use the environment to deform the material into a grasp. Thus contact points are constantly

changing between the fabric and environment surface. However, little to no motion occurs at the contacts

between the manipulator and the fabric as grasping occurs. In this example, the visualisation uses the

F-IHDM classifications referring to contact between the manipulator and the fabric only. It should be

noted that biomimetic grasping can occur in situations with different contact parameters, for example,

where the EC grasp starts at an edge, colliding with the environment surface before interacting with fabric

during the EC grasping motion. From Figure 3.17, one can observe that when deforming the material, a

classification of (8) C-P-N-W-A is applied to highlight the minimal motion at contact between the gripper

and fabric while EC grasping.

Alternatively, insertion grasping preserves the initial state of the garment by performing a motion that

constantly shifts the contact between the manipulator and the fabric. Figure 3.17 highlights this process

by showing Gripper 1 grasping a folded T-shirt while mostly retaining the folded configuration. Unlike
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(a) An example of biomimetic grasping. (b) An example of insertion grasping.

Figure 3.17: Grippers 3 (left) and 1 (right) performing EC grasping with dexterous manipulation anno-
tations and grasp pose tags.
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biomimetic grasping, within-hand motion does not occur while executing insertion grasping. Instead, a

non-prehensile sliding action inserts a thin finger between the fabric and the environment surface before

closing the grasp, as shown in Figure 3.17. Both devices which exhibited this behaviour (grippers 1 and

2), used a thin finger which slid between the garment and workspace surface with compliant mechanical

components, allowing the device to collide with the environment safely.

Insertion grasping is intrinsically limited when one considers that it can only occur where the edge

of a garment meets the table. While this factor limits the suitable grasping locations and can require

compliant components, the core benefit of such a technique remains the minimal disturbance to the target

garment’s state while executing this action. While developing Gripper 1, Donaire et al. [Donaire 20]

show this method grasping in multiple scenarios, including a garment on a surface and extracting a

single item from the top of a folded pile of laundry. Additionally, both manipulators capable of insertion

grasping also reference the skill of ‘flattening’, a motion involving a single VF sliding across a flat

garment, removing wrinkles and spreading the material. Under the F-IHDM taxonomy, such a motion

falls under classification (3) C-NP-M-NW-A.

One can consider biomimetic grasping to have an inverse set of limitations compared to insertion

grasping, as biomimetic grasping relies on deforming the material to grasp. However, such a property

means grasping can occur anywhere on the fabric’s body, including on the edge of a garment. Thus the

fingertip will drag along the environment surface before catching the fabric to grasp. While there are

variations of biomimetic grasping, including the hand in contact with the surface before grasping, the di-

rection of the virtual finger relative to the palm, the number of fingers moving within the interaction and

the final grasp pose, the various techniques remain quite similar. A contact, generally a non-prehensile

interaction, is made against the surface, then one or more appendages move inwards to produce a protru-

sion, which can be clamped upon by the effector. Half of the manipulators from the surveyed subset were

able to perform some kind of biomimetic grasping motion, including grippers 3, 5, 6 and 7; nevertheless,

across these devices this review notes several common limitations.

Firstly, biomimetic grasping generally uses position controllers that move the fingertips to brush

against the surface in pre-programmed trajectories. Such an approach did not result in robust grasping

behaviour for various reasons; Koustoumpardis et al. [Koustoumpardis 14] noted an issue where Gripper

3 fails to grasp fabrics with a low friction factor while performing biomimetic grasping. To alleviate

this issue, the authors propose changing the fingertips to use a silicon material with a higher friction

factor. Gripper 7 also uses silicon pads to increase the friction between the fabric and manipulator while
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performing biomimetic grasping.

Adding silicon materials to fingertips does increase the friction coefficient between the gripper and

fabric, improving the success of biomimetic grasping motions with low-friction fabrics. However, this

solution would not generalise well; increasing this friction would require the manipulator to exert greater

forces while navigating interactions with a higher friction coefficient. Consider the scenario where a

gripper has to drag along a table surface before interacting with fabric while grasping. While dragging

along the table, more actuator torque would be required to overcome the increased friction coefficient. A

more elegant solution to low-friction interactions would be a form of actuator force control, thereby mod-

ulating the wrench exerted at the fingertips. However, none of the manipulators capable of biomimetic

grasping can control the force exerted on the environment surface while dragging inwards. The complex-

ities of friction and normal forces applied while performing biomimetic grasping were also explored by

Ono et al. [Ono 01] while developing Gripper 6 when extracting flattened garments piled on top of each

other. Gripper 7 would also use biomimetic grasping to produce a stable protrusion rather than simply

grasping deformed material as the other devices did. It would then release the material and re-grasp at the

edge of the garment, a process visualised in Figure 3.18. However, such a solution would not generalise

to a wide range of fabrics due to the varying non-linear mechanical behaviours.

The noted last issue about biomimetic grasping was the inability of devices to execute this behaviour

from an arbitrary range of wrist orientations. Instead, the grippers usually approach the flattened fabric

Figure 3.18: Gripper 7 performing a unique biomimetic grasping technique, sourced from Shibata et
al. [Shibata 16].
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from a specific wrist orientation where the palm was parallel to the fabric, as seen by all the grippers

performing biomimetic grasping. While this notion was true for flat environment surfaces, Gripper 6

also performed biomimetic grasping on ‘non-flat’ environment surfaces such as a fashion mannequin’s

shoulder, which required unique wrist orientations. Additionally, Gripper 3 was capable of sliding fabric

to the edge of the table before moving the palm to a perpendicular orientation to the surface and grasping

[Koustoumpardis 14]. Despite these limited capabilities, the skill of being able to execute biomimetic

grasping from a range of wrist orientations on a flat environment surface, henceforth called arbitrary

grasping, remains one which the surveyed devices were incapable of utilising.

Another observation relevant to robotic EC grasping is that any manipulator capable of insertion

grasping is not capable of biomimetic grasping. This can be due to one or more factors. Firstly, the

manipulators targeting insertion grasping have specifically designed fingertips with thin geometric pro-

portions to slide between limited regions to execute insertion grasping. In contrast, grippers targeting

biomimetic grasping focus on dexterous in-hand skills to execute the grasp. Additionally, insertion

grasping uses motions provided by the arm appendage to execute the grasping motion.

In-hand dexterous skills applied to fabric manipulation

Once holding fabric, acts of dexterous in-hand manipulation such as haptic exploration and grasp gaiting

are often observed among the grippers. This section details how these skills are applied and identifies

their further applications. Inferring tactile information via haptic exploration has proven to be a valu-

able capability on effectors targeting deformable manipulation. Haptic exploration regarding fabric is an

in-hand motion where two virtual fingers perform a ‘rubbing’ motion to infer the fabric’s features. Appli-

cations include the classification of held garments, detecting slippage or determining grasp success. Two

manipulators from the discussed subset were capable of this skill, grippers 2 and 4. Gripper 2 contained

an embedded multi-modal tactile sensor for both classification and slippage detection, whereas Gripper

4 placed triaxial force sensors at the fingertips to complete the same set of tasks. Qualifying the haptic

skills of these two effectors is relatively simple. As mentioned when discussing grasp poses, Gripper 4

holds a precision grasp that could be considered a Tip Pinch (2) grasp while Gripper 2 uses a Palmer

Pinch (1) configuration. However, when described by the anthropomorphic framework, both effectors’

resulting in-hand dexterous behaviour is identical. A translation moves the contact points bidirectionally

along the z axis of the coordinate frame defined in Figure 3.14. One could describe this motion as haptic

exploration perpendicular to the palm. It can be complex to describe this motion using the F-IHDM
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taxonomy, but for the sake of simplicity, this chapter assumes that contact points change between the

finger and cloth while rubbing the material. Thus it comes under scenario (8) C-P-M-W-A.

Several grippers also capable of grasp gaiting, where the grip of a garment is never released, but the

grasp point is adjusted. Many of the manipulators discussed explicitly demonstrate or target this skill,

including the grippers 1, 4, 7, 8.1, 8.2 and 8.3 (Figure 3.19). One simple solution to perform grasp

gaiting is to apply a minimal grasp force that allows the fabric to slide between the held grip. Such a

skill is heavily connected to grasp force modulation capabilities and the majority of these devices take

this grasp force adjustment approach. Thus under F-IHDM definitions, grasp gaiting in this manner

fits scenario (6) C-P-M-NW-A. Gripper 1 performs grasp gaiting by sliding across the material with the

friction alteration mechanism retracted in the fingertip to allow the fabric to slide between the fingers.

Gripper 4’s description briefly details grasp gaiting behaviour, and associated media files highlight this

gripper performing grasp gaiting acts.

Devices 7, 8.1 and 8.2 apply an appropriate grasp force to allow the material to slide between the

fingers; it is also noted that Gripper 2 should also be capable of grasp gaiting in this manner using its

grasp force modulation capabilities. However, grasp gaiting behaviour was not presented in associated

media files nor publications describing Gripper 2. Finally, the only device to perform grasp gaiting using

an in-hand manipulation was Gripper 8.3. As described in Section 3.2.8, this device can perform an

in-hand manipulation by using two sub-clamps which release and regrasp fabric while moving along a

prismatic rail. Given the assumption is made that fabric is constantly sliding across the open sub-clamp,

such a motion could meet the manipulation classification of (8) C-P-M-W-A per Figure 3.14. Details

about the dexterous skills of these manipulators are also presented in Figure 3.19.

3.4.3 Applications

So far, this discussion covers the dexterous skills and methods of approaching EC grasping these various

manipulators apply. This subsection describes each manipulator’s applications to put these skills in

context. To start, some manipulators target individual dexterous skills as part of larger manipulation

tasks. For example, Grippers 3, 5 and 7 simply target grasping flattened fabric from the environment.

While such an act is part of a broader manipulation pipeline, i.e. unfolding or spreading fabric, the unique

skill of these manipulators is in performing a form of biomimetic grasping to grasp flattened material.

Interestingly, the devices that used insertion grasping to navigate the environment, Grippers 1 and 2,

included folding in their applications. Such an observation is consistent with the notion that insertion
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Figure 3.19: A summary of the dexterous skills from the discussed devices.3

3The skill of grasp gaiting is present under Gripper 2 with a dashed line as the literature did not indicate that this skill
explored by the authors. However, the grasp force adjustment abilities imply that such skill should be possible on this platform.
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grasping retains a garment’s initial state. Thus, any device targeting folding-based tasks requires the

skill of insertion grasping. Gripper 1 specifically targeted the tasks of moving folded garments, folding

a shirt, and tracing an edge, alongside generic manipulation skills such as insertion grasping, flattening

clothing and holding fabric. Alternatively, Gripper 2 targets garment picking (accounting for entangled

conditions), folding and general tasks such as sorting and unfolding.

Gripper 2 retained the broadest range of grasp forces (0-40N ), which assisted when grasping entan-

gled garments. However, this manipulator also performed haptic exploration at a reduced grasping force

of 10N , while the other devices had grasp forces up to 5N . Furthermore, Grippers 1 and 2 remain the

most ambitious regarding applications, yet both remain limited in terms of possible grasp poses. Both

were capable of the Palmer Pinch (1) grasp configuration, and Gripper 1 was additionally capable of a

Prismatic Finger (3) by splitting the lower finger appendage. However, Gripper 6 was capable of five

grasp poses identified in the derived grasp taxonomy. Borràs et al. [Borràs 20] also note how Gripper

6 remains diverse in terms of possible grasp configurations; nevertheless, the application of Gripper 6

was limited to executing biomimetic grasping on environmental surfaces such as stacks of fabric, table

surfaces or fashion mannequins.

Gripper 4 was not capable of EC grasping and only used the Tip Pinch (2) grasp. However, the desired

applications were unique throughout the observed set of manipulators. The applications outlined by Von

Drigalski et al. [Von Drigalski 17b] included bed-making or other tucking tasks. The skills required for

such applications included grasping and sliding to pull a bed sheet taut while using arm motions and

the static thumb appendage for tucking sheets into the bed. Finally, some manipulators only target the

application of edge tracing, i.e. Gripper set 8. Thus the only skill sought in these devices was grasp

gaiting. Observing the applications of these manipulators highlights several key points for consideration.

Insertion grasping is the preferred EC grasping method if folding is considered a necessary manipulation

primitive. Next, a two-fingered precision grasp should remain sufficient for many fabric-based robotic

applications. In addition, any generalised solution should possess grasp force modulation capabilities up

to a maximum grasp strength of 30N as outlined by Le et al. [Le 13].

3.4.4 Technical Review of Surveyed Grippers

This subsection addresses the technical details of the grippers considered, including the compliant com-

ponents, modelling approaches, the number of actuators present in a system, and system controllers. The
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devices capable of insertion grasping, Grippers 1 and 2, used compliant elements in the fingers that col-

lided with the environment. Gripper 1 defines their compliant joints in the lower fingers with a flexible

metal plate in a rotational joint limited to 0.523599 radians of motion, although no modelling informa-

tion about compliance is presented [Donaire 20]. Gripper 2 took a different approach where variable

impedance actuators (VIAs) control the compliance of certain joints at different stages of manipulation

to safely collide with the environment. A kinematic chain defining the manipulator and subsequent steps

are presented in two articles by Le et al. [Le 13, Le 15b], which allows the authors to use classical me-

chanics to create a Kinematic and Kinostatic model. Kinostatic modelling took place using planar twists

and wrenches, and screw theory solved the velocity kinematics. This process also involved modelling

the VIA itself, allowing the developers to comprehensively understand their device and its associated

grasping capabilities. The final design of Gripper 2 is a planar device with nine defined joints; two linear

actuators drive each finger in a series-parallel mechanism, and the VIA controls compliance at the finger

appendage.

Some descriptions do not provide a model of the gripper or the underlying control mechanisms. An

example is the originating publication of Gripper Set 8 [Sahari 10], which only presents the manipulator

components and design aspects without demonstrating a modelling procedure. However, when develop-

ing Gripper Set 8, the focus was not on developing new manipulator designs but on observing simple

devices and evaluating their edge-tracing capabilities. In addition, for some grippers, limited kinematic

modelling is presented. Koustoumpardis et al. [Koustoumpardis 14] provide a tendon-driven kinematic

and a kinostatic model while developing Gripper 3. However, this modelling did not consider scenarios

where the environment was present and estimated the forces needed to move and hold grasp poses. The

description of Gripper 5 presents the geometric equations to drive the CAM-follower mechanism, but

further modelling is limited. Von Drigalski et al. [Von Drigalski 17b, Von Drigalski 17a] did not present

modelling procedures when describing Gripper 4. However, the inspiring publication [Ma 16] provides

a system model that maps the tendon forces, joint forces and fingertip wrenches. Finally, the articles

describing Grippers 6 and 7 do not provide a modelling process for their manipulators. However, Ono et

al. [Ono 01] present a kinematic diagram of Gripper 6.

Another aspect to consider is the DoF and DoA (degrees of actuation) of the observed devices. As the

DoF or DoA of a device increases, the development and modelling procedures become more complex.

Ideally, the design of any novel device developed for fabric manipulation should try to minimise the

DoF and DoA parameters while maximising grasping and in-hand manipulations. Several devices in
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the surveyed set are underactuated, meaning they have more DoF than DoA. For example, Gripper 3

only used two rotational actuators embedded in the palm, each controlling a finger appendage with three

joints via tendons. Additionally, a passive thumb appendage was present to evaluate collisions. Gripper

5 used a single actuator to control a shaft with CAM mechanisms to move three finger appendages.

While both devices 3 and 5 could perform EC grasping, they lack further capabilities. Gripper 8.2 could

also be considered underactuated as a single actuator operates the device in a simple parallel gripper

structure, but roller fingertips rotate freely on bearings to improve edge tracing. One could also consider

the devices with compliant joints underactuated, i.e. Grippers 1 and 2. Interestingly, Gripper 4 has a

unique ability to switch between modes of under-actuation. Ma et al. [Ma 16] introduce this capability

and describe the tendon routing and modelling approach that allows this device to execute fully actuated

and underactuated motions. This device uses two actuators with tendon routing through a planar finger

with two joints.

Gripper 6 has seven joints and is also underactuated, as the final two joints on the finger serial-chains

are subserviently linked to the previous actuators. The remaining devices used actuators to control each

DoF. For example, Gripper 8.1 operates as a simple parallel manipulator, while Grippers 7 and 8.3 are

similar in structure, with two clamps operating along a rail. However, Gripper 8.3 uses three actuators

and can only move a single clamp device along the prismatic rail, whereas Gripper 7 is physically larger

and can move both clamps along the rail using four actuators in total.

Finally, the actuator control mechanisms are not detailed for most devices surveyed. This aspect can

influence manipulator behaviour, including dexterous motions and grasp forces. Some devices, including

Gripper Set 8, provide information about the actuators and encoders used in their setup but lack control

details. Similarly, for Grippers 3, 4, 5, 6 and 7, some technical aspects are detailed, such as the actuators

used, but lack information about a specific form of control. For these devices, one can assume that

a form of position control was present as pre-programmed trajectories or poses usually informed the

manipulator operation. Experiments with Gripper 1 used position control, but the authors [Donaire 20]

mention how the actuators are capable of torque control. The device with the most comprehensive

modelling process in its description, Gripper 2, also has a control system for the linear actuators and VIA

implemented [Le 15b]. This system assists the gripper in modulating the grasping strength throughout

the required tasks.



3.4. A TREATISE ON ANTHROPOMORPHICALLY DEFINED GRIPPERS 89

3.4.5 Open Areas to Address

The discussion so far has covered grip strength, hand pose, and dexterous behaviour that research-

developed grippers use to manipulate fabric. The diverse range of grasping poses of Gripper 6 [Ono 01],

had limited use cases indicating that a wide range of grasp poses are not required for manipulators specifi-

cally targeting deformable manipulation. Especially when considering the most diverse grippers in terms

of application, devices 1 and 2 only used precision grasps, reinforcing the perspective of point-to-point

grasping being sufficient for a wide range of fabric manipulation tasks.

Biomimetic grasping could be considered the more generalised solution to fabric EC grasping when

prioritising the initial grasp task. Such an observation aligns with the increased frequency of biomimetic

grasping compared to insertion grasping displayed by the surveyed manipulators. Additionally, biomimetic

grasping can apply to a more comprehensive range of applicable grasp points compared to insertion

grasping, which can only occur from the edge of a garment. However, when considering the effectors’

applications, the capability of insertion grasping would be necessary in any manipulator targeted toward

assistive or domestic use cases, as this method does not significantly change the state of the cloth as a

grasping action takes place, unlike biomimetic grasping.

None of the surveyed effectors could perform biomimetic grasping from various wrist orientations.

Generally, this action took place from an angle where the palm was parallel to the surface where the

grasp action would occur. No manipulator explicitly detailed a force control method while perform-

ing biomimetic grasping. It appears that the primary method was a heuristic approach, using pre-

programmed trajectories to drag inwards. Manipulators that could perform biomimetic grasping were

also incapable of haptic exploration. When observing the skill of haptic exploration, the examined ef-

fectors’ dexterous actions would solely traverse in a linear direction perpendicular to the palm. Tactile

exploration did not involve bidirectional motions, usually occurring linearly between fingertips.

Regarding grasp gaiting, the most utilised technique could be considered the most human-like ap-

proach, wherein slippage of fabric through the fingertips was allowed by dictating the applied grasp

force. From a development viewpoint, this indicates that a constructed manipulator targeting deformable

manipulation would require a control mechanism that could moderate the torque exerted by the grasping

actuators within the system. Such a feature could also be beneficial if haptic exploration were integrated

into the gripper design, as in Gripper 2, where the modulated grasp force could adjust to the task context.

Given these observations, one can observe various technical and functional limitations in the sur-

veyed grippers. The design thinking process now performs the ideate step, formulating a gripper design
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that can improve the existing state-of-the-art. The requirements of such a device include arbitrary grasp-

ing (biomimetic grasping from a range of wrist angles), grasp force modulation, haptic exploration,

and grasp gaiting. These skills fulfil the requirements of a dexterous manipulator that can perform the

pick-and-place sorting of textile waste. In addition to these desired capabilities, any proposed solution

should remain a simple system with limited actuators and an established modelling process. To build

a device that meets the technical criteria while retaining the desired skill set, actuators that form grasp

poses and interact with the environment will require torque or impedance control aspects to modulate

the grasp force and provide elements of control over the wrench exerted at the fingertip. The actuators

using impedance or force control must also be back-drivable and capable of the required stall torque

parameters for grasp strength up to approximately 30N . In addition, developing a novel solution should

avoid complex features such as tendon-driven designs or passive compliant joints.

Previous devices have used human morphology as an inspiration for design, for example, mimicking

the thumb and two fingers (grippers 1, 3, and 6) or simply a thumb-finger pinch (grippers 2 or 4).

However, these approaches must make concessions when replicating features of the human hand, such

as complex design features or size accommodations. In addition, replicating the human hand’s complete

motion can require many actuators, as shown by Xu and Tordorov [Xu 16]. Considering these factors,

this chapter proposes an alternative approach to gripper design. Thus, rather than broadly mimicking the

morphological aspects of the human hand or designing a manipulator from a targeted set of manipulation

primitives, a single grasp configuration from the F-GRASP taxonomy is used to inspire a design. The

grasp inspiration must be capable of the skills described above, while simultaneously using a minimal

number of actuators and maintaining a simple structure.

Therefore, this chapter proposes a gripper centred around the lateral grasp (see Figure 3.11) for

simple pick-and-place applications with fabric. The lateral grasp is a grip where the thumb performs

the majority of motions. Thus, a single serial-chain structure can represent actuation and needs only to

replicate thumb motions. Additionally, actuation can occur at each joint and does not require subservient

joints or complex actuation mechanisms. Formed grasps occur by pressing the thumb into the side of

the index finger in a point-to-point grasping configuration. While this grip may be ill-suited to more

refined deformable manipulation tasks such as folding or placing an item on a coat hanger, it remains

an acceptable grasping configuration for pick-and-place sorting. Finally, pursuing a design inspired by

the lateral grasp remains an avenue that previous research has not investigated. While the lateral grasp

initially seems acceptable, considering the arguments above, further investigation is required. Therefore,
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the final component of this chapter’s research presents a user study that examines how humans respond

to kinematic constraints while manipulating fabric to validate that such a conceptual design is sufficient

for generalised textile waste sorting.

3.5 Human-Centric User Study

3.5.1 Introduction

This chapter has discussed several capabilities required to implement a more versatile gripper solution

and proposed a conceptual design from an anthropomorphic hand-centric perspective. However, this

discussion primarily addressed manipulation from a single-hand context. Thus, to establish a broader

understanding of fabric manipulation and validate whether the proposed lateral grasp could be sufficient

for a simple, generalised fabric manipulation effector, a complementary user study4 investigates humans

manipulating fabric under various grasp constraints. Observations of human manipulation behaviour to

inform robot operation within deformable manipulation are present in the literature, as for example, the

video dataset of Verleysen et al. [Verleysen 20], who observe human folding of garments for transfer to

robot behaviour. As the manipulator survey and broader literature indicate that precision or ‘point-to-

point’ grasps should remain sufficient for simple manipulation tasks, the focus of this user study is to

investigate whether the type of precision grasp impacts task ability or efficiency.

While dataset-based approaches towards deformable manipulation strategies are a viable research

avenue, such endeavours usually involve gathering and annotating high-level motion planning methods

involving computer vision and garment state estimation (e.g. Verleysen et al. [Verleysen 20]). A user

study remains the most appropriate approach to validate the observations from Section 3.4 and investi-

gate the impact of grasp constraints on deformable manipulation. In the future, when further investigat-

ing grasping strategies, a combined user study and data collection could reveal more refined aspects of

deformable manipulation.

Investigating the grasp-type aspect of manipulation addresses two avenues through observing human

behaviour. Firstly, the task duration for various clothing manipulation actions, such as folding and sort-

ing, are studied. As Borràs et al. [Borràs 20] and Donaire et al. [Donaire 20] note, folding fabric could

see improvement from grasp configurations beyond ‘point-to-point’ poses. As this experiment constrains

the dexterous skills of humans by limiting their grasp configurations, one expected outcome is to observe

4The Human Research Ethics Committee (HREC) provided approval to conduct this user study as per University of Canberra
policies and guidelines: 6982 - Humans and Cloth Manipulation: Deriving inspirations for robotic manipulation.
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that folding tasks will take longer when constraining participant’s grasping behaviour. As this user study

seeks to validate that the lateral grasp will be sufficient for pick-and-place waste sorting, part of the

experiment also includes sorting garments into various categories. If the lateral grasp is sufficient for

simple grasping and sorting, then one would expect little difference in the duration of the sorting tasks

as a consequence of the constraints. Finally, a post-observation questionnaire asks participants how they

viewed the difficulty of manipulation while constrained. Such feedback can inform which tasks were

made more difficult and to what extent when constrained. This user study attempts to understand how

grasping constraints affect deformable manipulation by examining these aspects and validating that the

lateral grasp is a suitable inspiration for a more refined grasping solution.

3.5.2 Method

In total, 20 participants performed various fabric manipulation tasks in this user study. The instructions

provided to the participants were as follows. Firstly, the exercise began with a single T-shirt on a table in

a flattened state with instructions for participants to grasp the shirt from the centre and edge several times.

Then, following the grasping actions, instructions were given to the participants to fold and unfold the

shirt three times. Once dexterous actions with the shirt were complete, participants moved to an unsorted

heap of clothing made up of a necktie, scarf, two T-shirts, three long-sleeved collared shirts, one pair

of trousers and two pairs of shorts. Participants then extracted a tangled item from the heap five times,

defined as a garment item in contact with the table at the bottom of the heap. Participants then sorted the

clothing by type, followed by a repetition of the sorting task but with folding.

Subjects repeated this list of tasks three times. As repetition occurred, constraints informed partici-

pants of the types of grasps they were allowed to use. Such an experiment uses a within-subject setup,

where participants experience all constraints while under observation. Initially, participants are permitted

to complete the tasks however they see fit. Then, upon repeating the tasks for the second time, instruc-

tions informed participants to use a pincer/pinch grasp, i.e. the thumb and index finger5. Finally, upon

the third round of performing tasks, the constraint was use of the lateral grasp, in which participants

could only hold clothing with their thumb and the side of the index finger. Incidental contact during

manipulation was allowed. A four-camera setup in the University of Canberra HCT (Human-Centred

Technology) observation lab recorded participants to capture audio and visual data streams, as visualised

in Figure 3.20. The software Jamovi was used to conduct all statistical analyses in this chapter [Şahin 19].

5In this human-centric user study, the terms ‘pincer’ and ‘pinch’ are used interchangeably when referring to the thumb-
index-finger constraint.
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Figure 3.20: An example of the observation setup.

As previously mentioned, validation of the lateral grasp and observation of bi-manual manipulation

skills are the desired outcomes of this user study. Thus, a data collection process takes place, which

records the duration in seconds for participants to complete the tasks under various constraints from

the audio-visual recordings. Upon collecting the data, an initial calculation of the three common mea-

surements of central tendency occurs, followed by an in-depth statistical analysis. For the purposes

of the analysis, the null hypothesis was: There is no difference regarding temporal efficiency between

constraints while manipulating fabric in various tasks. Duration in seconds is a continuous dependent

variable (DV). The independent variable (IV) is the applied hand constraint, which is categorical with

three possible options (unconstrained, pinch and lateral). Finally, as each participant performed the

tasks under all three constraints, the design of this analysis is structured as a within-subject study. Un-

der these conditions, a compatible statistical evaluation is the repeated measures analysis of variance

(RM-ANOVA). The data collected for this user study was on a limited number of participants, and the

Jamovi software determined that the data was non-parametric. Therefore, the statistical interpretation of

manipulation duration uses the non-parametric Friedman test alongside pairwise comparisons with the

Durbin-Conover evaluation [Herath 22].

Upon finishing the outlined tasks, participants filled out a brief questionnaire asking how the grasp

limitations impacted the perceived difficulty (Appendix A.2). Participants provided a score by placing
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a mark on a line indicating from -100 (significantly easier) to 100 (significantly harder) for the tasks of

grasping, folding and unfolding under each constraint as compared to the unconstrained scenario. The

null hypothesis in evaluating this data was: The constraints did not impact task difficulty compared to

the unconstrained condition across manipulation tasks. Interpreting this data follows a slightly different

procedure than for the duration interpretation discussed above. Unlike the previous analysis, which con-

tains three categorical variables, this analysis only uses the pinch and lateral constraints, which are both

compared to the unconstrained condition. Aside from the two categorical variables, the other parameters

match the duration analysis. Thus an appropriate test to perform is the Paired Samples T-Test [Herath 22].

Additionally, Jamovi executes the non-parametric alternative Wilcoxon Rank Test [Herath 22]. This eval-

uation also collects the three common measurements of central tendency for the difficulty interpretation

data.
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3.5.3 Results

The first observation from this study was that regardless of grasp constraints, all human participants could

fold, sort, and manipulate clothing. Grasping from the environment and from an unsorted heap were both

obtainable goals, along with folding and sorting tasks. This exercise also revealed examples of adaptation

strategies while manipulating that the taxonomy discussion did not consider. These methods became

apparent as constraints appeared across the experiment. For example, a participant’s grasp strength or

arm configuration may have been insufficient to extract the garment from the unsorted heap. However,

several participants performed a bimanual manipulation with a second grasp to extract the garment and

overcome this issue. Another strategy observed was the participants’ use of the environment or their

bodies to assist with fabric manipulation, i.e. folding the garment over an arm or laying it out on the

table. While not directly impacting gripper design, these strategies indicate that adaptation methods may

be a viable approach in a deployed system when a grasp configuration or robot strength is limited.

This chapter now presents statistical interpretations of the task duration data. Table A.1 in Appendix

A.3.1 contains the collected task timings of the participants completing the set of instructions. Three

participants failed to follow instructions correctly during the data collection and missed specific steps.

The missing steps are highlighted in Table A.1. For the duration analysis, participants who made errors

are omitted. Thus this step uses the duration data from 17 participants. The duration data covers the

tasks of folding a shirt, sorting garments, and sorting with folding garments and compares these times

under the three constraints. A visualisation of the data as histograms is presented in Figure 3.21, and

as a box and whisker plot in Figure 3.22. For folding a T-shirt, these visualisations show the average

duration of the three task attempts under each constraint. Both Figures 3.21 and 3.22 show how the

applied constraints usually increased the duration of tasks when folding was involved. However, the task

of sorting (Figures 3.21(b) and 3.22(b)) saw a decrease in task duration when constraints were applied

when compared to the unconstrained condition. Table 3.2 presents the mean, median, and mode of the

duration data across these tasks.



96
C

H
A

PT
E

R
3.

H
U

M
A

N
IN

SPIR
E

D
G

R
A

SPIN
G

IN
V

E
ST

IG
A

T
IO

N

(a) Folding a shirt (b) Sorting (c) Sorting with folding

Figure 3.21: Histograms of the time-taken while performing several manipulation tasks under the three constraints.

Additional notes:
These histograms uses measurements of the time-taken by participants and groups the data-points into clusters within a range of 2.2 seconds. After this

process, these graphs plot the frequency of data-points that fall into each cluster.
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(a) Folding a shirt (b) Sorting (c) Sorting with folding

Figure 3.22: Box-plots of the time-taken while performing several manipulation tasks under the three constraints.
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Table 3.1: Friedman test with Durbin-Conover pairwise comparisons (generated from the Jamovi software).

Table 3.1.1: Folding T-shirtRepeated Measures ANOVA (Non-parametric)

Friedman

χ² df p

14.2 2 < .001

 

Pairwise Comparisons (Durbin-Conover)

      Statistic p

Unconstrained - Pincer 2.57 0.015
Unconstrained - Lateral 4.80 < .001
Pincer - Lateral 2.23 0.033

 

Descriptives

  Mean Median

Unconstrained 9.10 9.67
Pincer 11.25 9.67
Lateral 12.73 10.33

 

Descriptive Plot

Table 3.1.2: Sorting fabricRepeated Measures ANOVA (Non-parametric)

Friedman

χ² df p

5.12 2 0.077

 

Pairwise Comparisons (Durbin-Conover)

      Statistic p

Unconstrained - Pincer 2.0157 0.052
Unconstrained - Lateral 2.1073 0.043
Pincer - Lateral 0.0916 0.928

 

Descriptives

  Mean Median

Unconstrained 44.6 45
Pincer 38.3 36
Lateral 41.1 32

 

Descriptive Plot

Table 3.1.3: Sorting with foldingRepeated Measures ANOVA (Non-parametric)

Friedman

χ² df p

12.1 2 0.002

 

Pairwise Comparisons (Durbin-Conover)

      Statistic p

Unconstrained - Pincer 2.70 0.011
Unconstrained - Lateral 4.15 < .001
Pincer - Lateral 1.45 0.156

 

Descriptives

  Mean Median

Unconstrained 139 126
Pincer 167 151
Lateral 190 167

 

Descriptive Plot
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Table 3.2: The mean, median, and mode information for the duration (seconds) of various tasks under
different constraints. UC refers to unconstrained behaviour.

Folding a shirt Sorting Folding and sorting
UC Pinch Lateral UC Pinch Lateral UC Pinch Lateral

Mean 9 11 13 45 38 41 139 167 190
Median 10 10 10 45 36 32 126 151 167
Mode 10 9 8 51 36 23 134 93 142

Table 3.1 displays the statistical evaluation results for the three tasks. Values of probability (p) less

than or equal to 0.05 indicate a rejection of the null hypothesis that There is no difference regarding

temporal efficiency between constraints while manipulating fabric in various tasks, thereby indicating a

statistically significant difference between some constraint pairs. The results from Table 3.1 showed a

statistically significant differences when folding a shirt and sorting with folding. Furthermore, deeper

examination of the Durbin-Conover pairwise evaluations shows statistically significant differences in the

data are present between all three constraint comparisons under the folding a shirt task. For sorting

with folding, statistically significant differences were present for both the unconstrained comparisons,

while no difference was present between the pincer and lateral constraints. Such observations reinforce

the prediction of folding becoming more complex when only two virtual fingers can be used. Finally,

the only pairwise significant difference observed for sorting was between the unconstrained and lateral

constraint comparison. Interestingly, the average time of the lateral condition when performing the

sorting task was approximately 3 seconds less than the unconstrained condition.

The measurements of central tendency (Table 3.2) indicated that tasks involving folding showed a

generally increased average duration when both constraints were applied, with the lateral constraint also

further increasing the duration compared to the pinch constraint. One could attribute such a trend to

the fact that folding fabric is complex when using only two virtual fingers, i.e., the pinch and lateral

constraints. Donaire et al. [Donaire 20] specifically mention how folding only using pinch grasps can

be difficult. However, the sorting task saw a decrease in average duration when the pinch constraint

was applied, and the lateral average duration was higher than the pinch but lower than the unconstrained

scenario. One could attribute this decrease in average duration while sorting to the within-subject nature

of this experiment and the fact that sorting fabrics is a skill only requiring point-to-point grasps, meaning

the task was not hindered by constraints. As participants repeated the various instructions in the same

order, they may have gotten used to the tasks and repetition under the constraints. Therefore, participants

would not have been hindered by initial hesitations. However, the duration data indicates that humans
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Table 3.3: Paired Samples T-test with Wilcoxon rank evaluation - Participants response on grasp con-
straint difficulty.

Paired Samples T-Test

95%
Confidence
Interval

      Statistic df p Mean
difference

SE
difference Lower Upper

Pincer_folding Lateral_folding Student's
t -5.00 19.0 < .001 -34.3 6.85 -48.6 -19.92

    Wilcoxon
W 17.00   0.001 -37.5 6.85 -50.0 -20.0

Pincer_unfolding Lateral_unfolding Student's
t -3.32 19.0 0.004 -26.4 7.95 -43.0 -9.76

    Wilcoxon
W 1.00 ᵃ   0.002 -30.0 7.95 -65.0 -20.0

Pincer_grasping Lateral_grasping Student's
t -2.56 19.0 0.019 -22.3 8.71 -40.5 -4.06

    Wilcoxon
W 18.00 ᵇ   0.003 -30.0 8.71 -40.0 -20.0

ᵃ 7 pair(s) of values were tied
ᵇ 2 pair(s) of values were tied

 

Figure 3.23: A visualisation of participant responses to how difficult tasks under constraints were when
compared to the unconstrained condition.
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could perform basic textile sorting at similar temporal efficiencies regardless of constraints.

As previously mentioned, participants filled out a survey upon completing the tasks under various

constraints (Appendix A.2; collected data is available in Appendix A.3.1). Figure 3.23 provides a box

and whisker plot that visualises the participant response data. These results as analysed in Table 3.3,

indicate that participants saw the lateral constraint as more difficult than the pinch constraint across the

tasks of grasping, folding and unfolding. The task with the strongest rejection of the null hypothesis (that

constraints do not impact manipulation difficulty) was folding, further reinforcing how more than two

virtual fingers should be considered for folding-based manipulation primitives.

3.5.4 Discussion

A number of thought-provoking observations present themselves when considering the anthropomorphic

hand-centric discussion alongside the user study. Firstly, humans can exploit the environment to grasp

fabric regardless of constraints. Additionally, as constraints are applied, humans can still complete all

manipulation tasks, including folding, sorting and grasping. However, participants did not respond pos-

itively to the lateral constraint. Feedback from the fourth query in the questionnaire (see Section A.2)

indicated that participants felt a mental block while under this constraint. Several participants mentioned

that this approach felt unfamiliar or counter-intuitive, while others detailed additional motion planning

steps to move to an ideal configuration under the lateral constraint.

To reiterate, the primary objective of this project is fabric sorting or pick-and-place applications and

the target application of the novel gripper is the ability to grasp and sort textile waste streams. While

participants found difficulties using the lateral grasp, it remains a simple mechanical configuration that

could be useful for sorting applications. Grippers using the full capabilities of the human hand or the

pincer grasp could remain complex if replicated in a gripper design, whereas the lateral grasp mostly

uses the motions of the thumb to press into the side of the index finger. Regarding efficiency, with human

subjects the lateral constraint took longer on average than the pincer constraint for the tasks of folding,

sorting and sorting with folding. However, sorting fabric into various categories saw no statistically

significant difference between pincer and lateral constraints, and the average task completion time range

while sorting was within six seconds across all task attempts under the various constraints. Furthermore,

the literature suggests that no existing gripper design for fabric manipulation is inspired directly by the

lateral grasp, thus, such a design offers a novel potential contribution to the field of gripper design.

Another aspect to note is the taxonomy discussion on single-arm grasp force requirements. Previous
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devices indicate that around 5N for generalised fabric manipulation would suffice for basic tasks, and

for extreme extraction scenarios 30N of grip strength. However, when participants found their grasp

strength or kinematic configuration insufficient in the user study, a second hand was applied to assist

with the extraction task. For a single gripper design, these factors indicate that the novel device detailed

in Chapter 4 should still target a maximum grasp strength of 30N . Additionally, sensors that identify

material slippage and grasp strength modulation are likely to be beneficial.

3.6 A Refined Scope for a Unique Manipulator Solution

From the taxonomy analysis and user study, the requirements for a unique gripper for fabric manipulation

based on the lateral grasp are becoming apparent. They further indicate that the manipulator should be

capable of a grasping force of 30N , but that a reduced grasp force may be sufficient for manipulation

actions outside of entangled extraction. Multiple parameters can influence grasp strength and behaviour,

including fingertip friction or shape and the material properties of the held garment. Therefore, evaluating

the manipulator’s grip strength should include holding various fabrics with increasing payloads. Another

desired feature is the modulation of the manipulator’s grasp strength to enable tasks such as grasp gaiting

or haptic exploration. While the haptic exploration feature is not examined in this thesis, enabling the

degrees of freedom to explore this feature is still a requirement. The assumption is that for the simple

task of fabric sorting, any point-to-point grasp should remain sufficient and not impact the efficiency of

the task.

The primary research gap observed in current manipulators is that no biomimetic grasping method

can occur from various wrist orientations. This gap partially drives the development of the novel manip-

ulator described in Chapter 4. Once built and attached to a robot arm, the manipulator needs to be able

to pin flattened garments to a surface from a range of wrist orientations and execute a biomimetic grasp.

Additionally, while performing this grasping motion, the proposed manipulator is expected be able to

control the wrench exerted at the fingertip, which will drag across the environment surface. This require-

ment derives from the practical difficulties encountered by Koustoumpardis et al. [Koustoumpardis 14],

in which the friction of the fingertip impacted actuator torques while executing the biomimetic grasping

action, sometimes failing to grasp the material from a surface. It can be challenging to overcome these

issues while executing a grasp in this manner, as the precise details of the grasped fabric, table surface

parameters and the fingertip create a complex physical interaction. Using a force control mechanism may
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better account for unpredictable physical interactions, including friction, and currently stands as a novel

approach to this problem. Finally, while developing this manipulator, a target aspiration is to remain a

simple mechanical system that is a serial-chain manipulator, while retaining a wide range of dexterous

skills.

By studying previous devices described the literature with anthropomorphic taxonomies and analysing

the user study, this chapter highlights gaps which can inform novel approaches toward gripper de-

sign within deformable manipulation. As discussed in the survey into grasping by Babin and Gos-

selin [Babin 21], formulating robotic grasping objectives with taxonomies remains common in the litera-

ture. However, this chapter’s investigation into fabric manipulation using anthropomorphic classification

schemes has presented a different perspective, finding several previously unaddressed gaps. Further-

more, considering previous devices’ desired applications and underlying technical details alongside this

human-inspired perspective can lead to unexplored design avenues. The formulation of these observa-

tions was made possible by following the double diamond design thinking process steps of define and

ideate. Chapter 4 will conclude the process by addressing the prototype and deliver steps.
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Chapter 4

A Novel Manipulator for Fabric

Manipulation

This chapter builds upon the human-inspired gripper design and requirements outlined in Section 3.6 by

creating a manipulator inspired by the lateral grasp, an anthropomorphic grasp pose visualised in Figure

4.1. Following the multidisciplinary approach outlined in Section 1.4 and the research of Chapter 3,

this chapter translates morphological aspects of the lateral grasp into a serial manipulator design that is

capable of dexterous textile waste handling. The methodology of this chapter uses classical mechanics,

fabrication techniques, and engineering practices to iteratively develop the manipulator, which results

in a simulated URDF model alongside a hardware prototype as shown in Figure 4.2. The requirements

outlined in Chapter 3 indicate that the maximum grasping force required for edge cases in fabric manip-

Figure 4.1: The lateral grasp in the poses Lateral Extension Grasp (LEG), left, and Lateral Flexion Grasp
(LFG), right.
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Figure 4.2: A rendering of the gripper prototype alongside the developed hardware platform.

ulation is around 30N , as discussed by Le et al. [Le 13]. However, the gripper also needs to modulate

the applied grasp force. Additionally, this device needs to be capable of pinning flattened fabrics to an

environmental surface from an arbitrary range of wrist orientations before performing the act of envi-

ronmentally constrained (EC) grasping, which Chapter 5 explores further with data-driven approaches.

When considering the Double Diamond Design Thinking framework, this chapter performs the steps of

develop (prototype) and deliver, resulting in a fabricated device ready for data-driven experimentation.

Figure 4.3 presents the hardware platform with the key components labelled for reference. For further

visualisation, Section 4.3 contains an orthogonal engineering drawing of the gripper (Figure 4.10) along-

side an exploded assembly diagram (Figure 4.11).

Zwart [Zwart 22] presents an overview of engineering epistemology, the study of how engineers ad-

dress ‘wicked’ challenges. ‘Wicked’ engineering problems refer to complex and ambiguous challenges

that are difficult to define, requiring both theoretical and practical thinking patterns. Translating a grasp

defined in neuroscientific literature into a robotic manipulator can be considered a ‘wicked’ challenge, as

constructing a robot manipulator is a multidisciplinary undertaking that incorporates aspects of mechan-

ics, electronics and design while still creating a system that is faithful to the original design scope. This

chapter is an attempt to address the epistemological question: Can one use robotic development tech-

niques to build and integrate a unique gripper based structurally around the lateral grasp? To address

this query, a joint effort between University of Canberra collaborators was required. For a complete list

of project contributors, please see Appendix C.1.
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Figure 4.3: The gripper with components labelled.
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A range of development information is present to answer this query. Firstly, the content starts by

outlining a mathematical model, which includes analyses of the device’s kinematics, kinostatics and

dynamics. Such a process moves the device from a conceptual design towards a realised mechanical

system. Alongside the model, this chapter will also discuss integration details, including hardware con-

struction, sensor integration, ROS (Robot Operating System) communication, firmware development,

control mechanisms and simulation construction for further exploration with deep reinforcement learn-

ing (RL) algorithms. A preliminary survey also evaluates the manipulator’s grasp strength and capability

to hold various materials.

4.1 Conceptual Design

The lateral grasp, Figure 4.1, is an intermediate type grip that contains elements of both power and preci-

sion. The grasp points of contact are between the adducted thumb and the side of the index finger. Under

the original granularity of the GRASP taxonomy, such a description significantly distinguishes this con-

figuration from alternative grasps. However, upon closer inspection, the lateral grasp can exist within

a range of hand-pose configurations. Figure 4.1 illustrates two sub-configurations of the lateral grasp,

denoted as the lateral extension grasp (LEG) and the lateral flexion grasp (LFG). The key differences be-

tween these configurations include the rotation of the index finger’s metacarpophalangeal (MCP) joint,

which extends or retracts the position of the index finger for contact. When in the LFG configuration,

the thumb can exert a greater force against the index finger if considering the pose as a two-link planar

manipulator. While in the LEG configuration, the lateral grasp exerts a weaker grasp strength, but more

of the thumb’s fingertip can remain in contact with the index finger. This information infers that the

proposed manipulator can partially modulate the grasping strength based on the kinematic configuration.

The lateral configuration also remains a pose that performs point-to-point grasps. However, if consider-

ing the geometric definitions of Borràs et al. [Borràs 20] while observing Figure 4.2, one could define

the grasps of the proposed gripper as point-to-plane grasps.
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(a) The first conceptual gripper prototype using
FDM components on a mount.

(b) A second gripper prototype with an updated rail design
and larger stepper motor.

(c) The final iteration using aluminium links with the ap-
propriate impedance actuators and sensors.

Figure 4.4: The iterations of the gripper across development.
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The lateral grasp is easy to describe, with the thumb performing most of the required motions. Thus

one can represent a robotic equivalent as a serial-chain mechanism. The formulated gripper is a sequen-

tial joint-link device with a prismatic joint followed by three rotational joints, which broadly mimic the

motions of a human thumb. A static plate on the front of the manipulator represents the side of the

index finger, and the prismatic rail can move the thumb appendage closer and further away, replicating

the range of motion between the LEG and LFG (Figure 4.1). Therefore, one could consider the initial

prismatic rail component as a substitute for the index finger’s MCP joint rotation. The static plate is

a hemispherical shape with an embedded bumper sensor that detects collisions with the environment.

This plate also pins fabric to surfaces, enabling biomimetic grasping motions, and its shape enables the

pinning act to occur from a range of wrist orientations. The thumb appendage presses down upon the

plate, which acts as the second virtual finger, to hold the fabric in a point-to-point grasp pose.

Following the iterative nature of prototyping within Design Thinking, developing the gripper was

an iterative process that underwent several redesigns while establishing a viable research prototype, as

shown in Figure 4.4. The first prototype, Figure 4.4(a), initially used position-controlled Dynamixel

actuators to validate the gripper design. The publication of Hinwood et al. [Hinwood 20] presents this

first prototype and demonstrates the manipulator moving and performing basic grasps that leverage the

environment. Following this design, a second iteration presented an improved rail system that drives

the prismatic actuator, shown in Figure 4.4(b). This second iteration validated the final geometry for the

gripper prototype while highlighting remaining aspects to update. Finally, Figure 4.4(c) displays the final

minimum viable product (MVP), which uses servomotors with impedance controllers. The geometries

established in the second iteration informed the choice to implement these actuators. In addition, the

MVP also included sensing devices crucial to tasks involved in fabric manipulation.

4.1.1 Gripper Sensors

Many grippers discussed in Chapters 2 and 3 used sensors to detect forces at the fingertips or infer in-

formation from haptic exploration. The NAIST M2S gripper [Von Drigalski 17b] used two triaxial force

sensors in the fingertips to measure grasp forces and gather feedback for haptic exploration. Alterna-

tively, the sensor developed by Denei et al. [Denei 17] for fabric manipulation is a multi-modal device

consisting of a capacitive pressure sensor array, microphone, and ambient light sensor. Such a device

measures grasp forces, provides feedback from haptic exploration and determines grasp success. When

implementing the proposed gripper, two sensors interact with the environment while providing feedback.
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The first sensor is a collision detection sensor placed on the front of the static plate. A silicon tube with

an attached pressure sensor provides feedback to the gripper system, indicating when the gripper collides

with a surface in the environment.

The proposed gripper also contains a triaxial force sensor developed by Contactile1 embedded in

the fingertip. These sensors result from research by Khamis et al. [Khamis 18, Khamis 19]. The sensor

consists of a rubber body, with a pinhole camera and quadrant photo-diode embedded in the base. Inside

the rubber body, a diffuse reflector with illumination LEDs is present. As contact occurs, the rubber body

moves and deforms, and the diffuse reflector’s positioning shifts while the photo-diode reads light data

from the diffuse reflector.

Through a calibration and mapping sequence, this setup allows the sensor to read forces accurately

in three directions. Description of the electronics, calibration sequence and accuracy details are provided

by Khamis et al. [Khamis 19]. The sensor can measure forces of up to 35N along the z-axis and ±7.5N

along the x-axis and y-axis. However, a limitation of this sensing device is that the calibration process

occurs at the centre of the sensor’s rubber component. As a result, the accuracy declines as the contact

interaction moves away from this centre point. In discussions with the manufacturer, this degradation is

under investigation, but a solution to accurately model the phenomena in simulation is presently unavail-

able. Figure 4.5 visualises the dimensions and key technical aspects of the sensor. This sensor can also

be seen at the end of the final link of Figure 4.2, and Figure 4.3 explicitly outlines the position of the

sensor.

1https:://contactile.com/
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Figure 4.5: Dimensions and sensing coordinate frame of the triaxial force sensor.
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4.2 System Model

The gripper described in this chapter is an underactuated serial-chain manipulator with 4 degrees of

freedom (DoF) and four actuators. Such a design results in a limited range of possible tool-centre-

point (TCP, the end of the serial chain) configurations. This section presents the system model, which

details the kinematic, kinostatic and dynamic analyses, informing gripper operation and actuator choice.

The kinematic analysis establishes a relationship between the TCP and actuator’s motion variables (i.e.

position and velocity), while the kinostatic analysis relates the wrench of the TCP to the actuator forces.

Finally, the dynamic analysis establishes the required forces while considering the motion parameters

of position, velocity and acceleration. In order to minimise complexity, this modelling process does not

consider tendon-driven components and custom gearing mechanisms. The gripper model also considers

an alternative TCP that reflects the triaxial force sensor’s position. Appendix B contains MATLAB code

which performs the required calculations for the modelling described throughout this section.

4.2.1 Kinematic Analysis

Kinematic analyses in the context of serial-chain devices refer to a series of numerical or algebraic tech-

niques that relate TCP features to actuator behaviour. The initial step solves a specific set of non-linear

equations that relate the TCP’s position and orientation to the actuator configuration [Nielsen 99]. In the

case of a serial structure, elementary transforms sequentially apply from the base position until reach-

ing the final coordinate frame or TCP. Figure 4.6 visualises the transforms of the proposed gripper with

frames w and e representing the base and TCP, respectively. Given the limited actuators in the gripper,

both the forward and inverse kinematic equations are solvable via a closed-form algebraic solution.

Position Kinematics

The initial step in modelling the gripper as a serial-link manipulator begins with the standard Denavit-

Hartenberg (DH) parameters defined by Corke [Corke 17]. The DH parameters are a concise table format

that presents the sequential transforms of a serial-link structure. Table 4.1 details the parameters of the

manipulator. Included values for length parameters in Table 4.1 represent information from the final pro-

totype designed in CAD software. Additionally, a base transform is required to orient the manipulator

along the x-axis of the local world frame w. For brevity, this base transform is present in the first row of

Table 4.1. Figure 4.6 visualises the DH parameters with the blue coordinate frame representing the local
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world frame (w) and the red coordinate frame representing the TCP (e). For future reference, the fol-

lowing kinematics map actuator positions and speeds to the same features of frame e. Before proceeding

with the modelling process, this chapter also provides some notation details. The transformationAi indi-

cates the completed transformations of the ith row of Table 4.1, see Equation 4.1. Within this convention,

the constant base transform Aw refers to the first row of the DH parameters, using the static operations

Rz(θw) and Rx(αw). Alongside the transformation parameters, another column (qlim) denotes the joint

range for each actuator (qi). Figure 4.7 shows a mechanical drawing of the final prototype highlighting

the range of motion informed by the qlim values.

Table 4.1: Denavit-Hartenberg parameters

ji θi di ai αi qlimi

jw
π
2 0 0 π

2 N/A

j0 π q0 0 π
2 0 - 79(mm)

j1 q1 d1(18.6mm) a1 (20mm) π
2 0.8727 - 2.2689(rad)

j2 q2 0 a2(35.7mm) 0 0 - π2 (rad)

j3 q3 0 a3(44.5mm) -π2 −1.7453 - 0.0175(rad)

Figure 4.6: Visualisation of the DH parameters alongside a rendered gripper at a similar pose.
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Ai = Ai−1Rz(θi)Tz(di)Tx(ai)Rx(αi) (4.1)

The forward kinematics calculate the position and orientation of e relative to w using the joint posi-

tions. As the proposed manipulator only contains four actuators, the forward kinematics are constrained

to represent four TCP elements consisting of the position variables x, y and z alongside the orientation

component p (rotation about the y axis) when given the joint configuration q. Equations 4.2, 4.3, 4.4, and

4.5 define these forward kinematic (FK) expressions given the joint positions and define a relationship

between the coordinate frames w and e from Figure 4.6.

x = q0 + sin (q1) (a1 + a3 cos (q2 + q3) + a2 cos (q2)) (4.2)

y = − cos (q1) (a1 + a3 cos (q2 + q3) + a2 cos (q2)) (4.3)

z = d1 + a3 sin (q2 + q3) + a2 sin (q2) (4.4)

p = −q2 − q3 (4.5)

Assuming that the desired set of positions x, y, z and p are known, one can calculate the inverse

kinematics using the closed-form solution of Equations 4.6, 4.7, 4.8, and 4.9. For use during robot

operation, one applies these equations in the order of 4.8, 4.9, 4.7 and 4.6.

q0 = x− sin (q1) (a1 + a3 cos (q2 + q3) + a2 cos (q2)) (4.6)

q1 = π − acos

(
y

a1 + a3 cos (q2 + q3) + a2 cos (q2)

)
(4.7)

q2 = asin

(
z − d1 + a3sin(p)

a2

)
(4.8)

q3 = −p− q2 (4.9)
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Integrating the Triaxial Force Sensor

Assuming the standard DH convention, the previously presented Equations 4.2-4.9 define how the po-

sition and orientation of the TCP interact with the actuators. However, the development of this system

requires tactile feedback for reinforcement learning and long-term applications. A triaxial force sensor

attached to the TCP provides this functionality, as discussed in Section 4.1.1. As this sensor’s position

differs from the TCP of the standard DH convention, considerations are made during the kinematic mod-

elling process, resulting in a modified set of forward kinematic equations. A new value defined as ∆z

represents an additional transformation of the z-axis from the DH parameters. When estimated in CAD

software, this value was −13.36mm. Additionally, the pitch constraint previously declared within the

forward kinematics now has a constant value of π4 added to the rotation of the TCP. Figure 4.8 highlights

both of these changes. Finally, Equation 4.10 represents the coordinate frame of the sensor’s position

and orientation (As) given e. As also reflects the directions of measurement the sensor uses when taking

force readings.

As = e · Tz(∆z)Ry

(π
4

)
(4.10)

Developing the kinematic relationship between the actuator configuration and As requires modifica-

tion of the original FK expressions (Equations 4.2-4.5) to account for the sensor’s position and orientation

Figure 4.8: Displacement of the triaxial force sensor when attached to the robotic manipulator.
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rather than the traditional TCP of the DH parameters. The sensor position deviates from the standard

DH convention by the two transformations expressed in Equation 4.10 and visualised in Figure 4.8. The

kinematic expressions considering the sensor’s position require modified variables, which Equation 4.11

outlines. Figure 4.8 also shows how sensor’s orientation requires an offset of π
4 (45 deg) applied to the

calculation of p when considering the sensor. Equations 4.12-4.15 present the modified FK expressions

that reflect the features of x, y, z, and p for As. These modified expressions are reflected in Appendix

B.0.3 which presents the MATLAB code modelling the kinematics of the standard DH parameters along-

side the sensor-modified approach.

∆z = −13. 36mm, a3 = 44. 49mm See Figure 4.8

a3alt = 46. 45 =
√

∆z + a3 An alternative a3 value for the sensor (Figure 4.8)

qO = 0.2917rad = tan−1
(

∆z
a3

)
An offset added to q3 for calculation of the sensor’s position

q′3 = q3 + qO A modified q3 variable which includes the offset qO

(4.11)

xs = q0 + sin (q1)
(
a1 + a3alt cos

(
q2 + q′3

)
+ a2 cos (q2)

)
(4.12)

ys = − cos (q1)
(
a1 + a3alt cos

(
q2 + q′3

)
+ a2 cos (q2)

)
(4.13)

zs = d1 + a3alt sin
(
q2 + q′3

)
+ a2 sin (q2) (4.14)

ps = −q2 − q3 +
π

4
(4.15)

Similarly, the inverse kinematics from the sensor’s position and orientation rely on the core equations

derived from the DH parameters, i.e. Equations 4.6-4.9, with slight adjustments taken from the previous

paragraph resulting in Equations 4.16, 4.17, 4.18, and 4.19.

q0s = xs − sin (q1s) (a1 + a3alt cos (q2s + q3s + qO) + a2 cos (q2s)) (4.16)

q1s = π − acos

(
y

a1 + a3alt cos (q2s + q3s + qO) + a2 cos (q2s)

)
(4.17)
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q2s = asin

(
zs − d1 + a3altsin(ps − π

4 − qO)

a2

)
(4.18)

q3s = −ps −
π

4
− q2s (4.19)

To this point, the presented kinematic analysis uses the traditional DH parameters to define a novel

robot manipulator alongside the closed-form algebraic expressions for the forward and inverse kine-

matics, defining the positional relationship between the TCP’s pose and the actuator’s configuration.

Additionally, the modelling process has modified these expressions to account for the embedded triaxial

force sensor’s position. Appendix B.0.3 presents these calculations and validates them across the robot

manipulator’s workspace, assuming the joint position limitations (qlim) from Table 4.1.

Velocity Kinematics

The following modelling component builds the mathematical relationship representing velocity between

the actuators and TCP based on the positional information obtained in the previous section. The Jacobian

matrix discussed by Corke [Corke 17] models this relationship. The Jacobian matrix takes the forward

kinematic equations and partially derives each expression by the position of each actuator in the system,

resulting in a matrix that acts as a function of actuator positions (q). The final Jacobian, J(q), takes the

simplified form shown below in Equation 4.20. Equation 4.212 shows the calculated value of J(q).

J(q) =



∂x
∂q0

∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q0

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q0

∂z
∂q1

∂z
∂q2

∂z
∂q3

∂p
∂q0

∂p
∂q1

∂p
∂q2

∂p
∂q3


(4.20)


1 c (q1) (a1 + a3 c (q2+3) + a2 c (q2)) −s (q1) (a3 s (q2+3) + a2 s (q2)) −a3 s (q2+3) s (q1)

0 s (q1) (a1 + a3 c (q2+3) + a2 c (q2)) c (q1) (a3 s (q2+3) + a2 s (q2)) a3 s (q2+3) c (q1)

0 0 a3 c (q2+3) + a2 c (q2) a3 c (q2+3)

0 0 −1 −1


(4.21)

A matrix multiplication operation using the q̇ vector, which holds the actuators’ velocities, allows one

to use J(q) during robot operation. Using this operation, one can estimate the velocities in the directions

2Re: Equation 4.21, q2+3 = q2 + q3, c = cos, and s = sin
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defined by the forward kinematic expressions. Because the forward kinematics are in reference to w,

the velocity vector
[
ẋ ẏ ż ṗ

]T
also relates Cartesian velocities with respect to w. Therefore, one can

derive the speeds of the TCP with Equation 4.22. Inverting J(q) allows the modelling process to derive

a subsequent expression that estimates the required joint speeds from the desired TCP velocity as shown

in Equation 4.23.



ẋ

ẏ

ż

ṗ


= J(q)q̇ = J(q)



q̇0

q̇1

q̇2

q̇3


(4.22)

q̇ = J(q)−1



ẋ

ẏ

ż

ṗ


(4.23)

Before moving on to kinostatics, the last component to address in Jacobian development is the deter-

minant, det(J(q)). The calculated value of det(J(q)) is presented in Equation 4.24. As Corke [Corke 17]

discusses, when det(J(q)) = 0, the Jacobian loses rank and the expressions described in Equations 4.22

and 4.23 become invalid, as a kinematic singularity has occurred. When considering the qlim parameters

from Table 4.1, only a single condition creates a singularity, namely when the position of q2 is equivalent

to π
2 . While in operation, applying a small amount of noise to q2 alleviates such a condition. Figure 4.9

visualises the configuration when this scenario occurs.

det(J(q)) = −a2 cos (q2) sin (q1) (a1 + a3 cos (q2 + q3) + a2 cos (q2)) (4.24)

Kinostatic Analysis

To further model the gripper, understanding how the forces of the actuators impact the wrench exerted

at the TCP (or fingertip) is essential. Corke [Corke 17] specifies how the wrench at the TCP of a serial

link structure is a vector that details the forces and moments exerted in world frame w. One can map the

actuator forces to wrenches exerted at the TCP by modifying J(q), enabling calculation of grasp forces
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Figure 4.9: A mechanical drawing of the gripper where detailed view A shows the position of q2 (at π2 )
causing a kinematic singularity.

or wrenches applied to the environment. Modelling this process takes J(q) and applies a transpose

operation, J(q)T . The wrench at the TCP can then estimate the required actuator forces (τ ) (Equation

4.25). One can also perform a similar step shown in the velocity kinematics where J (q)T is inverted,

thus calculating the TCP wrench from actuator forces, shown in Equation 4.26. As the determinant of a

transposed matrix is equivalent to the determinant of the original, Equation 4.24 applies to J(q)T .



τ0

τ1

τ2

τ3


= J (q)T



fx

fy

fz

my


(4.25)



fx

fy

fz

my


= (J (q)T )−1



τ0

τ1

τ2

τ3


(4.26)
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Velocities and Kinostatics of the Sensor

Equation 4.20 develops the Jacobian matrix for the TCP of the standard DH convention. For brevity,

the steps to create the Jacobian matrix using the sensor’s position (Js(q)) are omitted from this section.

However, Js(q) is calculable simply by using the sensor’s forward kinematic parameters (see Equations

4.12-4.15) and using them to construct Js(q) as shown in Equation 4.27. With this change, the process

outlined throughout Equations 4.21-4.26 can be replicated to model the velocity and force relationships

assuming a TCP at the sensor’s position. The MATLAB code in Appendix B.0.3 contains the calculation

of both J(q) and Js(q).

Js(q) =



∂xs
∂q0

∂xs
∂q1

∂xs
∂q2

∂xs
∂q3

∂ys
∂q0

∂ys
∂q1

∂ys
∂q2

∂ys
∂q3

∂zs
∂q0

∂zs
∂q1

∂zs
∂q2

∂zs
∂q3

∂ps
∂q0

∂ps
∂q1

∂ps
∂q2

∂ps
∂q3


(4.27)

4.2.2 Dynamic Analysis

The kinematic analysis of Section 4.2.1 establishes the relationships between the position, velocity and

forces applied between w and the TCP as defined by the DH parameters in Table 4.1, alongside a du-

plicate process considering the integrated triaxial force sensor (Appendix B.0.3). The final modelling

component of the gripper is the system’s dynamics, establishing the required forces for desired move-

ment. The Lagrangian method formulates the dynamics of the gripper. Such a method establishes the

inverse dynamics problem, the estimation of torques and forces considering the position, velocity and

acceleration, q, q̇, q̈ → τ . Equation 4.28 concisely expresses the dynamics. This representation uses

three major components, the joint-space inertia matrix M(q), the Coriolis matrix C(q, q̇) and the gravity

term G(q), all of which are functions of the gripper’s configuration and motion.

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) (4.28)

As described by Corke [Corke 17], M(q) expresses the inertia experienced by each joint alongside the

products of inertia between joints. C(q, q̇) is a function of the manipulator’s present velocity along-

side position, producing information about the centripetal torques caused by each joint and Coriolis

torques produced by joint pairs. Finally, G(q) contains information about the forces required to over-

come gravity in the manipulator’s present configuration. Corke also discusses an additional term of



4.2. SYSTEM MODEL 123

F (q̇), which addresses motor friction. However, details of the friction properties of the actuators utilised

throughout the gripper’s iterative development were not available; instead they each have an in-built

low-level controller through which it’s possible to edit specific parameters but not access the underly-

ing mechanisms. Considering these factors, the friction term is absent when modelling the dynamics.

Next, symbolic equations manually derive the Lagrangian and validate the calculations with the robotics

toolbox of Corke [Corke 17]. Modelling the rigid body equations of motion follows the approaches

by Yoshikawa [Yoshikawa 90] or Sciavicco and Siciliano [Sciavicco 12]. The Lagrangian represents

the subtraction of potential energy (U) from kinetic energy (T ) or L = T − U . Per a definition from

Yoshikawa et al. [Yoshikawa 90], Equation 4.29 represents the torque or force required at each actuator

(τi). Alternatively, the form expressed in Equation 4.30 is also acceptable.

τi =
d

dt

(
∂

∂q̇i
T
)
− ∂

∂qi
T +

∂

∂qi
U (4.29)

τi =
d

dt

(
∂

∂q̇i
L
)
− ∂

∂qi
U (4.30)

The first step is to formulate expressions for T and U to implement this equation. However, to define

these terms, dynamic variables are required. These dynamic variables only require the DH parameters

of Table 4.1 and treat the sensor as part of the manipulator’s final link. For each joint-link pair ji, there

is an associated series of variables, including the inertia tensor Ii, the mass mi and the centre-of-mass

(CoM) Pi. The CoM of each link refers to a position representing the mass of each link within a single

particle. In the notation of Corke [Corke 17], this position is from the final transformation of a joint-link

pair. Thus if one assumes a constant local CoM transform pi, the CoM position for ji relative to w is

shown in Equation 4.31 as Pi. Finally, The mass of ji refers to the weight of the link-pair.

Pi = Aipi (4.31)

Ii for each joint refers to the inertia tensor about each link’s CoM (Pi). An inertia tensor takes

the form of a square matrix with nine elements as shown in Equation 4.32, per a definition provided

by Sciavicco and Siciliano [Sciavicco 12]. The inertia tensor holds the moments of inertia along the

diagonal elements Ixx, Iyy and Izz . The remaining elements present the products of inertia between

the axis. Although the values of this matrix for fabricated components can be complex to estimate

experimentally, a common approach is to extrapolate the inertia tensor among other dynamic parameters
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from CAD software, as mentioned by Gautier and Venture [Gautier 13].

I =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 (4.32)

The expressions for kinetic energy (T ) and potential energy (U ) require these dynamic parameters

for calculation. First, the kinetic energy T involves summing the translation and rotation components,

T = Tl + Tr. Calculating the translation component, Tl, is expressed in Equation 4.33, using the mass

mi and the velocity of the CoM for each link Ṗi.

Tl =

3∑
i=0

1

2
mi Ṗ

T
i Ṗi (4.33)

Calculating Ṗi uses an altered form of the Jacobian matrix shown in Equation 4.34. This method

takes the position vector Pi and generates a Jacobian matrix for the CoM of each link i, noting that as

shown in Equation 4.34, this Jacobian is always a three-by-four matrix. However, depending on the link

calculated, any columns representing actuators beyond the link being evaluated are replaced with zeros.

For example, estimating the speed or the CoM of link 0, P0 would involve only the partial derivative

expressions related to q0. One would then overwrite the remaining three columns with zeros. For P1, the

partial derivative expressions related to q0 and q1 would occur with the remaining columns then equalling

zero. This trend would continue as each joint-link pair is evaluated in the calculation.

Ṗi =


∂Pix
∂q0

. . . ∂Pix
∂qi

0 . . .

∂Piy

∂q0
. . .

∂Piy

∂qi
0 . . .

∂Piz
∂q0

. . . ∂Piz
∂qi

0 . . .

 q̇ (4.34)

The second aspect of the kinetic energy calculation, Tr, accounts for the rotational elements within

the kinetic energy term. This term uses the constant inertia tensors of each link, Ii, and the rotational

velocity of each link, ωi. While Ii remains constant, ωi requires calculation. Equation 4.35 expresses the

calculation of Tr.

Tr =
3∑
i=0

1

2
ωi
T Iiωi (4.35)

Calculating ωi involves constructing a rotational Jacobian matrix, which uses derivative values of
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rotation matrices (Appendix B.0.2). Such a calculation is also known as the rotational component of

the geometric Jacobian. This system’s rotational Jacobian JR(q) results in a three-by-four sized matrix

shown in Equation 4.36. A rotation matrix defines each column from the DH convention, ARi−1, which

defines the rotation matrix transformation up to the last operation before the transformation of joint qi

occurs. The derivative of each matrix is calculable by multiplying the rotation matrix with the constant

single-column matrix
[

0 0 1

]T
. When a joint is prismatic, the column values default to 0.

JR (q) =




0

0

0

 AR0


0

0

1

 AR1


0

0

1

 AR2


0

0

1


 (4.36)

To establish ωi, a similar process shown in Equation 4.34 occurs, in which the irrelevant components

involved in calculating the links’ velocities take a value of zero. Therefore, Equation 4.37 displays the

calculation method for the angular velocity (ωi) of each link.

ωi =




0

0

0

 . . . ARi−1


0

0

1

 . . .


0

0

0


 q̇ (4.37)

The presented calculations establish the kinetic energy T = Tl + Tr. However, the potential energy

U still requires calculation. This expression uses the mass and CoM position dynamic parameters with

the gravity vector g, as shown in Equation 4.38.

U =

3∑
i=0

(
−mi g

T Pi
)

(4.38)

The final Lagrangian takes these components and converts them to torques and forces via Equations

4.29 or 4.30. The MATLAB code, which calculates the Lagrangian alongside M(q), C(q, q̇), and G(q)

is presented in Appendix B.0.4. The calculated expressions for actuator forces are then presented in Ap-

pendix B.0.5. Furthermore, the dynamics inform actuator choice and indicate that the chosen components

are sufficient to move and control the proposed gripper during fabrication as Section 4.3.5 demonstrates.
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4.3 System Integration and Assembly

The developed gripper’s components, design and integration aspects evolved across several iterations

after completion of the modelling procedure. Initially, the development process created prototype com-

ponents using fused deposition modelling (FDM). However, the final mechanism used a combination of

bent aluminium components, FDM parts, actuators, and sensors alongside custom PCBs, as Figure 4.3

depicts. In addition to this fabrication process, the manipulator required integration into a ROS network

while communicating with custom hardware components. This section describes the implementation

details in conjunction with information surrounding the integrated actuators. Finally, a discussion sur-

rounding the ROS components used to interface the system for data-driven applications is presented.

Figure 4.3 displays the developed prototype, highlighting the sensors, actuators, links, fabricated

parts, and chassis components while the gripper is attached to a Baxter robot. Figures 4.10 and 4.11

present a mechanical drawing and exploded assembly diagram of this prototype. The CAD program Fu-

sion 360 provided the tools to develop the prototype and embed the various hardware components into a

single mechanical system. The final prototype uses bent aluminium plates to construct the links connect-

ing the rotational actuators. Aluminium is suitable for these components as the rotational actuators are

the components forming grasps against the static plate, thus requiring physically robust and lightweight

links while exerting torques and grasping forces. The remaining parts are FDM-printed components that

comprise the chassis and connection mechanism to a robot arm. All hardware involved in the manip-

ulator is attached to the chassis. The final MVP with the circuitry and sensors weighs approximately

1.4Kg.

As Figure 4.12 shows, the final gripper prototype was attached to a Baxter robot to evaluate data-

driven approaches and external vision modules. A Python API (Application Programming Interface)

using a ROS network enabled users to send desired position, velocity and torque commands to the robot

manipulator. The API could also obtain the latest state of the manipulator, including the current config-

uration, sensor feedback, and metadata from the hardware.
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127Figure 4.10: An orthogonal engineering drawing of the developed gripper.
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Figure 4.11: An exploded assembly diagram of the developed gripper.
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Figure 4.12: The final gripper prototype attached to a Baxter robot.

4.3.1 Actuator Components

Prismatic rail with a stepper servomotor

The first actuator chosen was the component that could provide motion to the prismatic joint (J0). This

initial prismatic joint slides the thumb appendage along the manipulator’s chassis, enabling the device

to alternate between the LEG and LFG configurations (Figure 4.1). Additionally, this motion allows the

fingertip to reach beyond the static plate component and interact with the environment while performing

EC grasping. A stepper motor coupled to a threaded rod with a lead screw achieves the desired linear

motion. Two supplementary non-threaded rods hold the structure together for support. Figure 4.13

highlights this component with the chassis, the static plate surrounding the rail, and the threaded rod

components attached to the stepper motor.

A stepper motor device was ideal for this component. Stepper motors are a type of actuator that

can operate in ticks or steps. A series of coils called phases perform this functionality via currents that

activate an electromagnet effect. Each time a set of coils are activated, the magnetised rotor aligns to

the next step or tick. Such a mechanism enables an open-loop form of position control. Commercially

available FDM printers use stepper motors for the precise control needed to move through three axes

while printing CAD files. After evaluating several stepper motors through the iterative Design Thinking

approach, the final prototype uses a NEMA-17 motor with a 38mm depth measurement (Appendix C.2

for details). Per specifications from the purchased device, each phase draws 1.7 A (Amps) at 2.8 V (Volts),
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Figure 4.13: Rendering of the prismatic rail component coupled to the stepper motor (J0).

allowing for a holding torque of approximately 0.36Nm (Newton-meters). As deployment took place,

the stepper drive set the phase limit to 1.32 A.

The mechanism that performs the linear motion is the coupling of the stepper motor to a threaded

rod. Thus one can model a relationship between the torque exerted by the stepper motor and the linear

force applied by the actuator depending on the threaded rod parameters. A stainless steel T8 ACME 8mm

threaded rod is used in this design, a common component that converts the rotation of a stepper motor to

linear motion. The physical parameters of this component are a thread pitch (P ) of 2mm, a lead length

of 8mm, and an assumed friction coefficient of 0.25N . Additionally, the ACME thread characteristics

mean that a thread angle of 29 degrees, defined as αth, is present in the thread. Finally, a variable of

mean rod diameter dm is present with a value of approximately 7.5mm. dm derives from the expression

dm = do − P
4 , which approximates the depth of thread on the rod. Assuming the holding torque value

given in the previous paragraph, Equation 4.39 estimates the maximum holding force of this prismatic

joint. The resulting maximum holding force is equivalent to 146.5N using the values of these threaded

rod parameters. Note that this expression assumes the maximum raising force using the holding torque

parameters for this stepper actuator. Once moving, the exerted force may differ.

FM =
2TR
dm

(
πdm − fc l sec (αth)

l + π fc dm sec (αth)

)
(4.39)

Dynamixel XM-430-350-R

The XM-430-350-R actuators are commercially available rotation servo-motors designed for robotic ap-

plications from the company Dynamixel. Several features surrounding these devices make them well
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suited to grasping applications. Firstly, they possess in-built position encoders that provide present posi-

tion and velocity feedback details. Furthermore, metadata such as the temperature or voltage are avail-

able. Additionally, these devices possess built-in lower-level control systems targeting position, velocity

and torque modalities. More specifically, these motors offer an operating mode referred to as current-

based position control mode, an impedance controller that takes in desired rotational positions and a

target current value that sets the maximum current the actuator moves with, thereby modulating the force

the actuator applies. Such a feature provides the capabilities to modulate the grasp force, as the rotational

actuators are the only moving components involved in the gripper formulating a grasp. Additionally, the

actuators contain free rotation bearings, which enables links with bracket connectors to robustly attach

to the actuator.

This actuator can also provide approximately 4.1Nm of stall torque at maximum. Per recommen-

dations from the manufacturer, the continuous duty rating of Dynamixel actuators is approximately 20%

of the maximum stall torque referenced. Therefore, operation of this gripper limits the impedance con-

troller to only use torque ranges up to a fifth of the allowed maximum. Even with this constraint, the

manipulator can apply grasp forces appropriate for fabric manipulation (Section 4.5). An evaluation was

required where an XM-430-350-R is attached to an FDM-printed structure and loadcell. Stall torque

values were calculated from loadcell measurements while the actuator was given various goal current

Figure 4.14: Measured stall torque readings of a Dynamixel XM-430-350-R actuator.
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commands while pressing into the loadcell, thereby modulating the exerted torque. A linear relationship

was confirmed, as shown in Figure 4.14. This figure also shows the maximum stall torque (1.388Nm)

and goal current (0.538 amperes) applicable to the Dynamixel actuators while using them in the safety

range to ensure continuous operation. These measurements occurred with an average voltage of 11.9V

and a velocity limit of 46 RPM. These settings may influence the stall torque of these rotational actuators.

4.3.2 Electronic Components

In order to control the actuators and communicate the present state of the robot manipulator, a custom

circuit board and communication protocol was required to maintain control of the robot and reliably

communicate with the host ROS system. This section details the electronics and low-level serial com-

munication that allows the manipulator to communicate across a ROS network, as depicted in Figure

4.15. The Dynamixel XM-430-350-R actuators use the RS-485 protocol to communicate with a serial

interface. This setup uses a max485 chip attached to the serial line (TX/RX pins) of a microcontroller.

The microcontroller then uses a library available from the manufacturer to communicate with the ser-

vomotors across the serial line. Communicating with these actuators includes sending information such

as the desired goal position and commanded current/torque, among other basic settings, and receiving

information such as the present velocity, position, temperature and other meta-parameters.

Controlling the prismatic actuator, which uses a stepper motor, is slightly more complex. As the

rotational actuators run low-level in-built controllers, integrating such devices requires a communication

setup and an understanding of the actuator’s capabilities. However, the stepper motor has no in-built

controller. Therefore, for the prototype presented, a custom controller that accepts desired position and

velocity commands was implemented to control the first joint of the manipulator. While details of the

integrated stepper motor were present previously (Section 4.3.1) this section provides details about the

circuitry and communication protocol implemented to transmit information from the microcontrollers to

a higher level program.

An A4988 breakout circuit interfaced with an ATmega32U4-driven microcontroller for integration

of the stepper motor with the electronics. The microcontroller then pulsed the NEMA-17 stepper motor

depending on whether the actuator was at the target position, and a target velocity determined the pulsing

speed. The ATmega32U4 device (known as the Qwiic Pro microcontroller) also acted as the controller,

and processed commands via serial to set the target speed and position, while providing feedback on the

present motion details. Commands given to the stepper were unsigned 16-bit values, which indicated the
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linear position in tenths of a millimetre. A linear relationship converted the position information to pulse

step values. The linear expression used a gradient of 2.4572 to convert the prismatic joint position value

into a step value, informing the stepper motor rotation behaviour. One limitation of this approach is that

controlling the stepper motor component in this manner remains an open-loop system. This description

is apt as there is no mechanism to validate that steps have pulsed successfully, i.e. not skipping steps. As

discussed further in this section, a laser measuring the linear displacement of J0 is present to partially

address this issue.

The manipulator’s primary control device was a Teensy 4.0 microcontroller, which sent serial data to

the Dynamixels and the microcontroller handling the stepper behaviour. The Teensy also communicated

using another serial line to the host PC, which controlled the manipulator’s commands and feedback

data. Additionally, several sensors which used the i2c bus interfaced with the Teensy microcontroller and

provided further feedback information, including about the orientation of the manipulator via an inertial

measurement unit (IMU), collisions with the environment using a pressure sensor, and the position of the

prismatic actuator with a time-of-flight (ToF) laser. The IMU device was a breakout circuit connected

to the i2c bus on the printed circuit board (PCB) attached to the hand. The pressure sensor evaluated

readings in an airtight silicon tube at the end of the static plate appendage. This mechanism provided

a signal to indicate if the manipulator had made contact with the environment surface. Finally, the

manipulator used a ToF laser embedded in a position that enabled it to query the displacement of the

rail component to verify J0’s position if required. However, the ToF laser takes over 100ms to collect a

single reading. Therefore during operation, a ToF reading only occurs upon request, and pauses system

serial communication while doing so. Such a solution is useful for calibrating the rail component, but

cannot enable closed-loop operation for J0.
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Figure 4.15: An overview of the electronic architecture.
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Figure 4.3 indicates the positions of the sensors and actuator positions on the manipulator, while

Figure 4.15 outlines the electronics. A list of components and their commercial sources is provided

in Appendix C.2. In order to integrate the various components, a custom PCB provides the interface

to communicate data, provide power and control the manipulator. A series of drop-down regulators are

present on the PCB to control the power requirements of the manipulator. Firstly, a regulator that converts

a 24V input power source to 12V is present, after which two subsequent regulators of 5V and 3.3V

provide power for the microcontrollers, breakouts and i2c sensors. Finally, logic-level converters are

also present to communicate between devices with different logic voltages. The circuit design uses two

dual-layered PCBs using standard 2.54mm PCB headers to connect, these being located in a detachable

3D-printed case connected to the main chassis.

4.3.3 Software

Serial Communication

As previously indicated, serial communication plays a prominent role in the operation of this manipula-

tor for communicating between microcontroller components and interfacing with the ROS network. A

communication protocol that dynamically structures byte arrays provides an interface across the various

hardware components. This protocol is necessary as data to command the actuators and receive feed-

back from the sensors uses a range of positive and negative integer values. However, these values do not

exceed the range of 16-bit numbers; accordingly, the message protocol assigns two 8-bit integers (bytes)

to each message, representing the destination and command. Table C.1 in Appendix C.3 describes the

available destination and command options. For example, a message may define a destination of J0 and

a command of TARGET-POSITION. Two more bytes then define a 16-bit integer split by bit-shifting,

representing the desired target position of J0. A byte array then embeds these messages with addi-

tional metadata, including checksum bytes and payload information, before sending the array across a

serial line. Table 4.2 visualises this message protocol and data definitions that parsed manipulator status

information.

Table 4.2: The byte message structure that communicates between the ROS host and microcontrollers.

{List of commands (l c)}
Header Payload Destination Command Payload upper (u) Payload lower (l) Footer x2
0x00 length(l c) uint8 D uint8 C JOIN(uint8 u, uint8 l) (u <<8) | l 0x00
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ROS architecture

The final aspect of development discussed is the implementation of the ROS architecture, which connects

the data from the gripper to a local network, enabling RL implementations and general python scripts

to send commands and receive feedback. As described in Section 4.3.3, a serial line on the Teensy mi-

crocontroller sends byte array data which communicates with a ROS node that parses this information

through to a ROS network. Figure 4.16 displays the information of a custom ROS message that en-

codes all the information of the gripper’s state. For the actuators, present motion information such as

the position and velocity are available. Furthermore, due to the in-built microcontroller and sensors of

the rotational actuators, additional information, including the temperature, voltage, and alarm status, was

available and utilised. Finally, target position and current (torque) commands were available for the rota-

tional actuators, while the prismatic actuator used target position and velocity commands. The actuator

commands are listed in Figure 4.16, which highlights these components in red text. Finally, the gripper

state holds data from the triaxial force sensor and i2c sensors, except for the ToF laser, which embeds

Figure 4.16: The custom ROS message structure for the gripper.
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readings into the state of the prismatic actuator.

4.3.4 System Evaluation

Evaluating Operating Speed

Given the software details and hardware components discussed above, this section evaluates operation

speeds and communication latency. The first investigation studied the duration of the gripper’s operation

loop and firmware modules, thereby informing operation speed alongside accommodations required to

integrate various sensor and communication modules. Evaluating these temporal aspects of the firmware

involved sending debug serial messages that record the duration of various operations in the firmware.

The evaluation process collected 10000 duration values for three modules within the firmware, these

modules being the operation loop, the Dynamixel interface, and the sensor interface. Table 4.3 presents

the results and describes the modules analysed. The results indicate that obtaining gripper feedback from

the sensors and actuators takes approximately 8ms, while commanding the Dynamixel actuators averages

around 2ms. However, each operation loop took approximately 30ms to execute. The longer duration

of the operation loop could be due to issues with inter-controller or ROS host communication modules.

The final results indicate that the gripper can reliably operate at 30Hz for commanding the system and

providing reliable feedback regarding the device’s state.

Evaluating Serial Latency

In order to evaluate the communication latency during operation, a ping process occurs in which the

serial ROS node on the host computer sends a request message to the microcontroller. Once received, the

Table 4.3: Microcontroller evaluation of the gripper.

Description
Mean
(ms)

Mode
(ms)

Median
(ms)

Min
(ms)

Max
(ms)

Standard
Deviation

(ms)
Control
Loop
Duration

The speed at which the control
loop operates.

30.11 30 30 29 31 0.68

Dynamixel
Interfacing
Duration

The duration to command the
Dynamixel actuators.

1.835 2 2 1 4 0.59

Sensor
Interfacing
Duration

The duration of executing the
sensing modules and obtaining
Dynamixel feedback.

7.95 8 8 7 8 0.21
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microcontroller sends a response message to the ROS host. This evaluation records the duration of the

process to gather an understanding of the serial communication latency. Similar to the evaluation in the

previous section, this exercise runs 10000 pinging actions to estimate the system latency and the associ-

ated variance. This process occurs for communications to the Teensy microcontroller and the Qwiic Pro

microprocessor that handles the prismatic joint operation. While simultaneously collecting this duration

data, an additional process acquires the latency duration for the ROS network. This second evaluation

process replicates the pinging action described above for both microcontrollers, but the duration mea-

sures the time a ROS node could send and receive a message from the hand. Such an evaluation measures

the latency across the ROS network, which also requires the serial communication line to send data to

the hardware.

Table 4.4 displays the results of these pinging evaluation processes. Per the results of Table 4.4,

serial communication between the ROS host and both microcontrollers returned an average ping latency

between 12ms and 14ms. The evaluation of the Teensy microcontroller saw a significant increase in the

mode latency value when compared to the mean for both the serial and ROS network ping evaluation.

Such phenomena could be attributed to the increased processing load on the Teensy as opposed to the

Qwiic Pro microcontroller, as the Teensy may have delayed responses while gathering sensor and actu-

ator feedback while processing the primary operation loop. In contrast, the Qwiic Pro only reads serial

data and controls the stepper actuator. Considering that this data refers to a pinging action that sends two

Table 4.4: Communication latency evaluation of the gripper.

Description
Mean
(ms)

Mode
(ms)

Median
(ms)

Min
(ms)

Max
(ms)

Standard
Deviation

(ms)
Teensy
Serial
Latency

The speed at which the Teensy
communicates with the ROS serial
node via a pinging serial request.

12.8 22 10 1 31 7.45

Teensy
ROS
Latency

The speed at which the Teensy can
interface with a python program
that commands the gripper across
the ROS network.

29.99 40 28 6 60 7.87

Qwiic
Serial
Latency

The speed at which the Qwiic Pro
communicates with the ROS serial
node via a pinging serial request.

13.6 12 13 3 33 3.37

Qwiic
ROS
Latency

The speed at which the Qwiic Pro
can interface with a python program
that commands the gripper across
the ROS network.

30.7 30 30 10 53 3.44
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messages, one can infer that, on average, serial communication between the gripper and the local ROS

node can communicate at 100Hz during operation. Furthermore, the pinging process averaged approxi-

mately 30ms for both microcontrollers for the evaluations that considered the ROS network. This level

of responsiveness should remain acceptable to operate the gripper in data-driven applications.

4.3.5 Estimating Dynamics from CAD

Using a publicly available add-on3, Fusion 360 allows users to generate a URDF (Unified Robot De-

scription Format). URDFs are XML (Extensible Markup Language) files that robotic simulations use

to integrate models of mechanical structures. URDF files also use the physical properties of CAD soft-

ware to estimate dynamic variables, including the inertia tensors and CoM parameters, relative to each

component. However, the link transformation structure is mismatched from the kinematic parameters

(Section 4.2). Figure 4.17 visualises the URDF while highlighting file coordinate frames, visualising

this discrepancy. Compared to the kinematics presented in Figure 4.6, the URDF coordinate frames do

not align with the traditional kinematics.

3https:://github.com/syuntoku14/fusion2urdf

Figure 4.17: The gripper URDF model, visualised with RVIZ.
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Figure 4.18: The example trajectory made to estimate the required actuator forces.
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Figure 4.19: The forces required to execute the trajectory of Figure 4.18 under two orientations. Each row represents the gripper at a different orientation
visualised on the right.
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Table 4.5: The dynamics parameters of the URDF and derived variants for the modelling
process.

Original URDF
parameters

Inertia Tensor (kg ·m2)
[xx,yy,zz,
xy,xz,yz]

CoM
transformation (m)

[x, y, z]

mass
(kg)

Link 0 (ul0) N/A (uses prismatic joint) [0.0, 0.006, 0.026] 0.2032

Link 1 (ul1)
[0.000217, 0.000241, 0.000187

1e-06, 6.7e-05, -1e-06]
[-0.013, 0.0, 0.034] 0.3135

Link 2 (ul2)
[2.9-e05, 3e-05, 2.1e-05,

0.0, -1e-06, 0.0]
[0.034, -0.019, 0.011] 0.1085

Link 3 (ul3)
[3e-06, 3e-06, 4e-06,

0.0, 1e-06, 0.0]
[0.022, -0.019, -0.007] 0.0123

DH model
dynamic parameters

Link 0 (hl0) * [-0.0001, -0.0161, -0.0235] *

Link 1 (hl1)
[2.17e-04, 1.87e-04, 2.41e-04,
-6.70e-05, 1.00e-06, 1.00e-06]

[-0.0330, 0.0134, 0] *

Link 2 (hl2)
[2.90e-05, 2.10e-05, 3.00e-05,

1.00e-06, 0, 0]
[-0.0017, 0.0113, 0.0010] *

Link 3 (hl3) * [-0.0225, 0.0000, -0.0070] *
The methods for estimating the DH-based dynamics parameters from the URDF are in Appendix C.4.

Estimating the dynamics parameters of the modelling process from the URDF file requires further

considerations. First, the URDF from the CAD script uses the world coordinate of the CAD software

to generate the joint transformations, hence the discrepancy between the traditional kinematics and the

generated URDF. Additionally, the URDF format estimates the local constant CoM vector from the joint

actuating the link, whereas the convention used in the modelling process of Section 4.2 takes the inertia

tensor and CoM parameters from the end of a DH row, i.e. the final transform of the joint link pair.

Finally, as mentioned in Section 4.3.1, the Dynamixel actuators can attach bracket links via a free-drive

bearing aligned to the actuator horn. The final two links connect in such a configuration. Therefore a

simplified assumption is made that the actuation point is between the driving horn and the free-drive

bearing. Conversely, in the URDF of Figure 4.17, the actuation point is directly upon the free-drive

bearing components. With these considerations in mind, Table 4.5 presents both the URDF dynamics

parameters and the converted values for the DH-based modelling approach from Section 4.2.

Finally, using these dynamics parameters and the robotics toolbox of Corke [Corke 17], this section

creates an example trajectory to observe the required actuator forces while moving the gripper. The RNE

(Recursive Newton-Euler) algorithm estimates these required forces. When calculating the Lagrangian

in Appendix B.0.4, the formulated Lagrangian was symbolically equivalent to the RNE output of the
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toolbox. The same trajectory is evaluated twice, with the gripper in a horizontal base position and another

orienting the gripper downward. Figure 4.18 displays this example trajectory’s positions, velocities

and accelerations, while Figure 4.19 displays the required forces. The motion forces required are well

within the capabilities of the actuators described in Section 4.3.1. For example, Figure 4.19 indicates

that the trajectory requires torques between −0.02Nm and 0.04Nm to perform the trajectory with these

dynamics parameters. The Dynamixel XM-430-250-R actuators used in the final MVP are capable of

exerting 1.388Nm of stall torque at maximum during gripper operation. Similarly, the trajectory requires

forces between 0N and 6N during operation for the linear rail, which the chosen stepper motor and rail

mechanism can exert per Section 4.3.1.

4.4 Environmentally Constrained Grasping

A vital aspect of this gripper is the ability to grasp flattened clothing from various wrist orientations

using biomimetic grasping motions, also known as arbitrary grasping per definitions from Chapter 3.

The gripper’s static plate is semi-cylindrical with uniformly rounded edges, as Figure 4.20 visualises.

Using geometry and spatial mathematical operations, one can calculate a transform that estimates the

contact point of the static plate colliding with an environmental surface as visualised in Figure 4.21 using

the toolbox of Corke [Corke 96]. Assuming the DH parameters of Table 4.1, Equation 4.40 performs

this calculation using additional constant variables, including the displacement of the static plate along

the respective axis of frame w (xd, yd and zd) and the size of the static plate determined with two

radii variables yr and zr, Where yr refers to the radius of the static plate along the xy plane, and zr

referring to the radius of the rounded edge. Additionally, two input parameters, yrot and zrot, indicate

the orientation of the gripper relative to the environmental surface. These input parameters are limited

to values between −1.39626 and 1.39626 radians4. The final function of mp (map-point) is in Equation

4.40, which calculates the contact point positional transformation.

mp(yrot, zrot) =


xc

yc

zc

 =


xd + cos (zrot) yr − (zr − zr cos (yrot))

yd + yr sin (zrot)

zd + zr sin (yrot)

 (4.40)

Cp = T (mp(yrot, zrot))Rz(zrot)Ry(yrot) (4.41)

41.39626rad = 80deg
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Figure 4.20: A visualisation of the static plate component demonstrating the variables for estimating a surface’s position when the gripper makes contact.
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Figure 4.21: Calculation of level surface contact visualised with a yrot and zrot value of 40°.

Beyond calculating the position of contact, one could also estimate the location of a table surface

using the transformation ofCp (Equation 4.41), as visualised in Figure 4.21. However, such a calculation

assumes that the transformation has accurately estimated a perfectly level table and provides no further

information about the friction or required forces to drag along the environment surface. While such a

solution remains incomplete for informing a pipeline of grasping behaviour, the unique features of the

static plate are still present. Additionally, when applying data-driven approaches to learn environmentally

constrained grasping, the state of the gripper includes the orientation to inform grasping behaviour. In

order to demonstrate the capability of arbitrary grasping, a publication which demonstrates an early-

stage design of this gripper [Hinwood 20], demonstrates the gripper using the static plate to pin and

Figure 4.22: The initial EC grasping evaluation using pre-programmed trajectories [Hinwood 20].
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grasp fabric with pre-programmed trajectories from a range of wrist angles. This design used position-

velocity-controlled actuators to execute grasping behaviour on a flattened jumper. In 90 grasp attempts

only a single failure occurred, this being when a double fold formed in the fabric and the garment slid out

of the grasp while the arm was moving upwards. Figure 4.22 shows this preliminary evaluation during

the gripper’s early development.

4.5 Evaluation of Grasping Characteristics

This section characterises the grasp strength of the gripper. Evaluating the device’s grasp force capabili-

ties follows two processes. Firstly, the sensor Jacobian Js(q) mentioned in Section 4.2 and properties of

the Dynamixel actuators from Section 4.3.1 estimate the expected grasp strength the gripper is capable

of exerting. A loadcell placed on the static plate component measures the grasping forces exerted by the

hardware device at various torques and gripper configurations. The readings from the loadcell are then

compared to the expected values generated by Js(q). A loadcell is used to estimate the grasp force rather

than the triaxial force sensor because the latter’s exact centre point is difficult to orient directly onto the

plate at various kinematic configurations. As previously mentioned, the triaxial force sensor experiences

a degradation in accuracy as the point-of-contact moves away from its centre-point. Following this grasp

force evaluation, an experiment similar to that of Donaire et al. [Donaire 20] takes place in which the

gripper holds a range of garments at varying positions to demonstrate the maximum payload the gripper

is capable of grasping.

4.5.1 Grasp Strength Validation

Forming a grasp with the gripper involves taking a pose that places the triaxial force sensor against the

static plate, with deformable material held by this point-to-plane configuration. The impedance controller

of the rotational actuators can then use a combination of target position and torque (current) values to

ensure that the grasp is exerting a force against the static plate. The sensor Jacobian Js(q) can calculate

the exerted forces and a moment (about the y-axis) in the world frame w, as shown in the kinostatic

analysis of Section 4.2. Due to the DH parameters defined in Table 4.1 and the position of the static plate

(placed along the xy plane of w, see Figure 4.21), estimating the grasping force with Js(q) becomes a

matter of estimating the force applied along the z-axis of frame w. Therefore, assuming that the gripper

is in a pose that collides with the static plate, the grasp force is calculable by taking the transposed inverse
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of the sensor jacobian (Js(q)
T )−1, multiplying it by the actuator forces, and observing the force along

the z-axis of w. The expression to estimate the grasp force is shown in Equation 4.42. The direction of

the estimated force along the z-axis must also be negative as the sensor presses into the static plate in a

downward direction relative to the z-axis of w.



fx

fy

fz

my


=
(
Js(q)

T
)−1



τ0

τ1

τ2

τ3


The highlighted value of fz represents the grasping force

against the static plate. A calculated grasping force will al-

ways be negative due to the direction the TCP presses into

the static plate relative to w.

(4.42)

As grasp formation only uses the final two actuators of the system, this evaluation operates under

the assumption that both J0 and J1 are stationary and not exerting any force while estimating the grasp

strength. A range of torque commands under two grasping configurations have been measured on the

gripper and measured with an attached loadcell (Figure 4.23). Table B.1 in Appendix B.0.6 displays

these readings alongside the stall torque exerted by J2 and J3, calculated with Js(q). When collecting

Figure 4.23: The fabricated gripper with a loadcell attached to the plate.
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these loadcell measurements, J2 and J3 used the target pose values and goal torque commands shown

in Table B.1. When forming a grasp, the stall torque exerted by J2 will always be greater than J3 due

to the position of the static plate relative to both J2 and J3. Therefore, when using Js(q) to estimate the

actuator torques from the loadcell measurements, this evaluation expects to observe that the commanded

torque of J2 closely reflects the initial stall torque measurements from Figure 4.14. Figure 4.24 displays

the Jacobian-estimated torque exerted by J2 while in the LEG configuration, while Figure 4.25 visualises

the same information while the gripper is in the LFG configuration. Both figures compare the Jacobian-

estimated torque of J2 to the stall torque estimates of Figure 4.14 while grasping.

Figures 4.24 and 4.25 show that the Jacobian-estimated stall torque readings exerted by J2 fell below

the actual stall torque estimates in Figure 4.14. This difference could be due to one or more aspects of

this evaluation. Firstly, a small FDM cap was placed on the loadcell sensor to ensure that the sensor was

safely pressing into the loadcell. Such a setup may have impacted grasp force readings. Secondly, the

sensor’s position is taken relative to the sensing coordinate frame (As from Section 4.2.1) of the sensor,

which influences calculations made with Js(q). Furthermore, As remains beneath the rubber overlay,

so that damping caused by the rubber may have impacted force readings. In addition, a position on the

rubber’s body would have been in contact with the loadcell, not the position of As. A small amount

of mechanical backlash was also present at the connection point between the servo horn of J1 and the

aluminium link that connects J1 and J2, which may have also impacted loadcell readings. Finally,

in certain circumstances, the target position of J2 was within 5 degrees of the resultant position while

grasping (Table B.1), and as the difference between the target position and position of J2 fell, the position

gain variable of the impedance controller used by the Dynamixel actuators may have further impacted

loadcell measurements.

The grasp force readings from Table B.1 indicate that the gripper can grasp at a maximum of ap-

proximately 17.25N in the LEG configuration and 29N in the LFG configuration. As discussed at the

beginning of this chapter, Le et al. [Le 13] recommend a maximum grasping strength of 30N for gen-

eralised garment handling. Therefore, this evaluation demonstrates that the developed gripper broadly

meets the grasp strength requirements for such a task while retaining the capability to modulate applied

grasp forces. However, this evaluation highlighted some limitations in the grasp modelling process when

compared to the hardware prototype. Expanded modelling practices using a refined manipulator design

with further experimentation should yield a more accurate system model.
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Figure 4.24: Comparison of expected torque running through J2 while in the LEG configuration (visualised), compared to
stall torque estimates of Figure 4.14.
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Figure 4.25: Comparison of expected torque running through J2 while in the LFG configuration (visualised), compared to
stall torque estimates of Figure 4.14.
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4.5.2 Holding Garments

In order to evaluate the functionality of the gripper while holding garments, another validation process

was conducted to demonstrate the gripper holding various materials with additional weights to prove it

is capable of holding a diverse range of garment payloads. Inspired by the experiment of Donaire et

al. [Donaire 20], the gripper holds clothing for 20 seconds. An earlier prototype of the gripper (Figure

4.4(b)) failed to hold a garment weighing above 800g in a LEG pose, more specifically, a jumper object

(a) Scarf (b) Neck Tie (c) Jean Shorts

(d) Shirt (e) Jumper

Figure 4.26: The gripper holding various garments.
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with an additional 300g. The set of garments evaluated in this trial included a jumper, neck-tie, jean

shorts, scarf and t-shirt, as shown in Figure 4.26. While exerting the maximum available torque com-

mand, a Dynamixel goal current of 200, the final gripper prototype could hold all garments regardless of

the kinematic pose being in the LEG or LFG configuration. A maximum additional weight of 550g was

applied to each garment to give a maximum weight of 1050g (while holding the jumper) and the gripper

was still capable of holding all target objects.

4.6 Concluding Remarks

The gripper formulated in Chapter 3 has been modelled, fabricated and evaluated as described in this

chapter. This research has resulted in a mechanical system that uses existing serial-link modelling pro-

cesses inspired by the approaches of Corke [Corke 17] and Yoshikawa [Yoshikawa 90]. Additionally,

the device is capable of grasp force modulation and appropriate grasping forces needed for generalised

fabric manipulation. This device also partially addresses the previously mentioned gap of being able to

perform environmentally constrained grasps from various wrist orientations. These aspects contribute to

the distinctive nature of this generalised pick-and-place fabric sorting solution. To compare the charac-

teristics of this device with those of previously existing solutions, Table 4.6 compares grippers discussed

in Chapter 3 with the fabricated device of this chapter.

Some aspects of this gripper require further exploration. For example, the device remains capable

of haptic exploration, performing rubbing motions against the static plate. This aspect, alongside slip-

page detection and reaction, is beyond the scope of this thesis and will be further explored. A possible

avenue to explore in this regard would be a replication of the haptic exploration setup of Drigalski et

al. [Von Drigalski 17b], who enabled a gripper to distinguish a range of deformable materials with a

machine-learning approach that interpreted rubbing data from two triaxial force sensors. In addition, a

greater understanding of the grasp force and the rotational actuators’ impedance controllers could sup-

port future skills embedded in this device. While the gripper in its present form has some limitations, it

fulfils the outlined requirements by presenting a serial-link gripper that retains the capabilities for pick-

and-place sorting of textile waste. Chapter 5 builds upon the formulation and development of the gripper

by exploring data-driven approaches to environmentally constrained grasping of fabric.
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Table 4.6: A comparison of the grippers discussed in Chapter 3 with the fabricated gripper.

Grasp
force
range

Grasp
force

modulation

Grasps
leveraging

environment

Tendon
driven

components

Compliant
joints

[Donaire 20]

N/A No Yes No Yes

[Le 13]

0-40N Yes Yes No Yes

[Koustoumpardis 14]

N/A No Yes Yes Yes

[Von Drigalski 17b]

4.7N No No Yes Yes

[Koustoumpardis 17]

N/A No Yes No No

[Ono 01]

N/A No Yes No No

[Shibata 08]

N/A No Yes No No

[Sahari 10]

5.47N No No No No

[Sahari 10]

0.93N No No No No

[Sahari 10]

3.3N No No No No

Fabricated Gripper

0-29N Yes Yes No No



154 CHAPTER 4. A NOVEL GRIPPER FOR TEXTILE SORTING



Chapter 5

Novel Motor Control Skills for Grasping

with Environmental Constraints

Chapters 3 and 4 used the Design Thinking framework augmented with human-centric observations to

formulate and develop a unique gripper for sorting textile waste. While the presented device can control

actuator behaviour and interface system feedback, it lacks a higher level of ‘intelligence’ to execute dex-

terous behaviour. The gripper’s desired skill set (Section 3.6) includes the capability to perform arbitrary

grasping, i.e. the ability to grasp flattened materials with environmentally constrained (EC) grasping from

a range of wrist orientations. The ability to leverage the environment while grasping makes humans pow-

erful manipulators of the world [Eppner 15]. Previous manipulators targeting fabric manipulation explore

EC grasping with compliant joints and pre-programmed trajectories [Le 13,Donaire 20,Shibata 09,Kous-

toumpardis 14]. Unlike these devices, the gripper of Chapter 4 is a single serial-chain rigid body system,

and pre-programmed trajectories are insufficient to handle the diverse scenarios an arbitrary grasping

setting introduces. For example, a pre-programmed trajectory cannot adapt to a significant change in

wrist orientation and may fail to execute the grasping motion. In addition, leveraging the environment

while grasping fabric remains a complex collision-rich interaction where parameters such as the applied

wrench, friction coefficient, and material properties influence grasp completion. Reinforcement learn-

ing (RL) has seen success in learning complex physical interactions for robots [Elguea-Aguinaco 23],

where a neural network (NN) provides commands to system actuators that inform intelligent behaviour

at a higher level [Ahn 20, Peng 20, Zhu 22]. Using these data-driven approaches to execute EC grasp-

ing remains an unexplored research avenue that this chapter investigates by asking: Can reinforcement

learning algorithms execute EC grasping by learning from a reward schema inspired by human-centric

155
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behaviour?

5.1 Introduction

5.1.1 Environmentally Constrained Grasping

Section 2.1.3 discusses the importance of grasps that exploit the environment, and the role they play in

combating uncertainty and improving grasp robustness. Using RL to navigate contact-rich manipula-

tion is a common approach [Suomalainen 22, Elguea-Aguinaco 23]. Given the status quo, this chapter

approaches the challenge of learning the appropriate motions to execute arbitrary grasping. Building

upon the human-inspired manipulation theme present throughout Chapters 3 and 4, this chapter takes

observed human behaviour from the literature, specifically from Eppner et al. [Eppner 15], to develop a

data-driven approach that allows the gripper learn the skills of arbitrary grasping. Such a task involves

developing a reward schema that encourages RL algorithms to command the gripper of Chapter 4 to

perform a biomimetic grasping motion that drags along the environment before closing into a grasp. As

Figure 5.1: A participant in the user study conducted by Eppner et al. [Eppner 15].
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humans consistently leverage the environment to improve grasp success [Puhlmann 16,Kazemi 14,Saran-

topoulos 18, Della Santina 17], the reward structure to encourage EC grasping uses the human-centric

conclusions drawn by Eppner et al. [Eppner 15]. They conducted a small human-centric survey in which

five participants grasped objects from a flat surface, sometimes with visual impairments as shown in

Figure 5.1.

This study found that participants would rely on environmentally exploitative grasps more often

when visually impaired, indicating that such a skill can counteract uncertainty during manipulation.

Furthermore, grasps that leverage the environment naturally saw an increase in interaction with the envi-

ronment, inferring that a greater distance travelled along the environment occurred while moving into a

grasp. These observations by Eppner et al. [Eppner 15] drive the formulation of the reward function de-

veloped in Section 5.2.2. When developing the simulated learning environment and reward structure, the

distance travelled while in contact with the environment becomes part of the observation vector used to

inform dexterous manipulation. This notion of distance travelled along the environment also contributes

to the formulation of a reward function that encourages the gripper to perform EC grasping.

Developing grasping strategies that not only navigate the environment, but also exploit constraints to

improve grasping success is considered a challenge, which applies to the deployment of modern robots

in diverse pick-and-place scenarios [Newbury 23,Babin 21,Elguea-Aguinaco 23]. Previous devices have

shown the capability to perform EC grasping motions via pre-programmed trajectories with both rigid

objects [Xu 09, Odhner 12] and fabric [Koustoumpardis 14]. This chapter builds upon these previous

approaches of EC grasping by using the observations of Eppner et al. [Eppner 15] to formulate a reward

signal that encourages the gripper of Chapter 4 to execute arbitrary grasping a flattened garment laying

upon a rigid, level surface. Such an approach has never been explored, and the research of this chapter

demonstrates that a data-driven method is a viable approach to lean arbitrary grasping, bringing robots

closer to generalised manipulation. As fabric conforms to applied manipulations, kinematic information

and sensor feedback from the gripper will inform the RL algorithms about the current manipulation

stage. Developing this skill with RL also provides a baseline approach to investigate more complex

fabric handling tasks. For example, a difficult task investigated by Ono et al. [Ono 01] required a robotic

system to perform a biomimetic grasp on a stack of fabric while only extracting the topmost item. An

RL approach could potentially be applicable to such a challenge.
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5.1.2 Scope for Reinforcement Learning

This chapter considers two state-of-the-art RL algorithms for training intelligent robotic behaviour. The

algorithms of Soft-Actor Critic (SAC) [Haarnoja 18c] and Twin Delayed DDPG (TD3) [Fujimoto 18]

have seen success in learning a desired policy assuming the appropriate world and reward function are

present. A policy in RL refers to a module that uses the present state to generate an action. In this case,

the policy assumes that an external vision component has detected a garment, and a motion planning

algorithm has moved the gripper to pin the fabric to the environment surface as shown in Figure 5.2. The

contribution of this chapter investigates how TD3 and SAC can learn arbitrary grasping and apply such

a skill to the gripper of Chapter 4. Such research requires the construction of both an RL environment

and reward function. The developed environment uses the URDF model from Section 4.3.5, alongside

a simulated Baxter robot in PyBullet [Coumans 16]. This simulated learning environment follows the

standard template from the Python Gym library [Brockman 16], enabling a smooth integration of RL

algorithms for training. Approaching EC grasping in the scenario of Figure 5.2 uses several observations

from anthropomorphic grasping discussed in Section 5.1.1. First, there is the aforementioned aspect of

distance traversed across the environment. The state vector in this learning problem will include a value

that holds the distance the ‘fingertip’ has travelled along the environment while dragging inwards to a

grasp. In this case, the ‘fingertip’ refers to the position of the triaxial force sensor (see Equations 4.12-

4.15). The distance notion also forms part of the reward signal discussed in Section 5.2.2, where the

gripper will receive a reward for dragging along the environment before closing into a grasp.

Heinemann et al. [Heinemann 15] discussed how the ‘closing’ action, while exploiting the environ-

ment, usually takes on a similar form before conforming to static object characteristics. In the learning

context of this chapter, the manipulated garment will conform to the gripper’s manipulation actions.

Considering this aspect, the simulated learning environment does not include fabric while learning the

EC grasping policy. Rather the policy will learn EC motions upon a rigid surface with varying friction

properties. Simulating fabric remains complex and while some research has seen success in deploying

fabric with PyBullet [Matas 18, Seita 21], the objective of this chapter is to create EC grasping policies

that drag along an environment before closing into a grasp. Integrating deformable objects into a simu-

lated RL environment lies beyond the intended scope of this project. The learning of this chapter focuses

upon whether a reward signal based around the distance notion of human-centric EC grasping can result

in RL policies that can grasp flattened garments via the learned motions.
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Figure 5.2: Example scenarios that the RL problem will address by learning arbitrary grasping, showing
the gripper pinning fabric to the table surface from a range of wrist orientations.
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After training in simulation, this chapter deploys learned policies to perform EC grasping with the

hardware platform upon several garments. This chapter demonstrates that these learned motions in sim-

ulation translate to the grasping of fabric with the real-world gripper. However, there are complexities

associated with EC grasping. As previous studies have shown, the friction interaction between the grip-

per, fabric, and environment will influence the forces required to execute a biomimetic grasping motion

and affect grasp success. Koustoumpardis et al. [Koustoumpardis 14] and Shibata et al. [Shibata 09] both

sought to change the friction factor between their respective grippers and fabric by overlaying silicon on

their ‘fingertips’ while performing a pin-and-drag motion. To ensure that the training process encounters

a range of friction interactions, the simulation performs domain randomisation on the friction properties

of both the gripper’s triaxial force sensor and the environment surfaces. In addition, the simulation en-

sures that the policy is robust to perturbations in collision interactions by slightly varying the orientation

of the rigid surface on which the policy learns EC grasping. Such features can assist in the training

of robust policies that can grasp fabrics with differing physical properties and also aid learned skills in

overcoming the reality gap.

5.2 Implementation

5.2.1 Learning Algorithms

This section presents the implementation of the RL algorithms TD3 [Fujimoto 18] and SAC [Haarnoja 18c].

Both have successfully trained specific robot skills within locomotion and manipulation, as discussed

in Section 2.3.3. However, the implementation of RL algorithms can significantly impact the training

process. The case study of on-policy algorithms by Engstrom et al. [Engstrom 19] demonstrated how

code-level-optimisations impact results more significantly than the algorithm of choice. Furthermore,

Henderson et al. [Henderson 18] studied RL training aspects including hyperparameter tuning, reward

scaling, seeding configurations and NN structures, observing how they could significantly impact both

on-policy and off-policy approaches. In an effort to remain transparent while discussing the training

of EC grasping upon the gripper of Chapter 4, this section outlines the implementation details of both

TD3 and SAC. For convenience during development, both algorithms follow a single learning process.

Additionally, the algorithm development process made use of the PyTorch library for practical conve-

nience and access to CUDA-compatible hardware. Upon initialisation, the learning process activates

specific components related to each algorithm. However, updating the network parameters differs for
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both approaches as they use distinct objective functions and contain some fundamental differences, as

outlined further in this section. Before discussing these differences, this section provides an overview of

the generalised learning framework.

General Off-Policy Implementation

Algorithm 1 presents the pseudocode of the learning procedure TD3 and SAC follow for learning EC

grasping. The process uses several hyperparameters defined in notes under Algorithm 1 and comments

in the pseudocode. The learning process follows standard conventions used in off-policy algorithm im-

plementations. The process begins by executing trajectories that use random-action transitions which the

replay buffer stores. After collecting enough of these random steps, the policy samples actions from the

algorithm throughout executed trajectories. Simultaneously, the learning process updates policies after

each trajectory by sampling transitions from the replay buffer. As the learning algorithm converges to

a solution, the actions taken by the policy improve upon the total reward received throughout trajecto-

ries. Algorithm 1 also outlines elements from the environment described further in Section 5.2.2. For

example, after Rs steps have occurred since the last hard-reset1 event, another hard-reset occurs that

resets certain simulation elements and performs domain randomisation on the robot manipulator and

surrounding environment.

The learning algorithm A contains functions including UPDATE and GETACTION, which are both

components of SAC and TD3, with minor distinctions due to the algorithms’ implementation differences.

The set of learning hyperparameters S outlined in Algorithm 1 differ depending on whether the learning

process is using TD3 or SAC. In order to track and compare different algorithm progression, the learning

procedure also periodically saves the NN weights using an in-built function of the PyTorch library. While

training, the function EVALUATIONPROCEDURE uses Tensorboard to log learning progress. The learning

framework calls EVALUATIONPROCEDURE every Es steps to perform an evaluation sequence involving

16 grasping actions equally distributed across the range of possible wrist orientations in simulation. The

evaluation sequence returns the average reward received across these grasp attempts and Tensorboard

saves this data throughout training.

1The hard-reset function is discussed in Section 5.2.2.
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Algorithm 1 General Off-Policy EC learning Learning Process

function EXECUTELEARNINGTRAJECTORY(A, Is, Ns,D)
for each environment step do

s← GETSTATE()
if Ns ≤ Is then

a← SAMPLERANDOMACTION() . Use random actions until Ns exceeds Is
else

a← A→ GETACTION(s)
end if
SENDACTION(a) . Sends actuator commands to the robot manipulator
s′ ← GETSTATE()
r ← REWARD(s, a, s′)
D → STORE(s, a, s′, r) . Stores a complete transition to the replay buffer
Ns+ = 1

end for
return Ns,D

end function
Input: (Ts, Is,Dlen,S, rs)
Ns ← 0 . Sets the number of steps taken to 0
A → INITIALISE(S) . Initialises the learning algorithm A (Can be TD3 or SAC)
D ← REPLAYBUFFER(Dlen) . Sets up the replay buffer D of length Dlen
SETREWARDSCALING(rs) . Setup the reward scaling for the environment
while Ns ≤ Ts do . Learning processes performs Ts environment steps

Ns,D ← EXECUTELEARNINGTRAJECTORY(A, Is, Ns,D)
if Ns > Is then

for U number of iterations do
A → UPDATE(D) . Training begins after all random steps are collected

end for
end if
if Rs steps have occurred since the last hard-reset event then

ENVIRONMENTHARDRESET . Perform a hard-reset event
end if
if Es steps have occurred since the last evaluation procedure then

EVALUATIONPROCEDURE . Perform an evaluation procedure
end if
if Ms steps have occurred since the model saving process then

SAVEPOLICIES . Save the actor and critic NN weights
end if

end while
SAVEPOLICIES . Save final actor and critic NN weights upon completion.

rs - Refers to the reward scaling hyperparameter.
Ts - Refers to the maximum number of steps the training process performs.
Ns - Refers to the number of steps executed.
Is - Refers to the initial number of random steps collected during training.
Rs - Refers to the number of steps taken before a new hard-reset action is called.
Es - Refers to the number of steps taken before a new evaluation procedure is called.
Ms - Refers to the number of steps taken since the models were last saved for Tensorboard analysis.
U - Refers to number of updates applied to the RL algorithm after a trajectory.
S - Refers a set of hyperparameters related to the initialisation of A. See details about each specific
algorithm in Section 5.2.1.
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TD3 Algorithm

TD3 by Fujimoto et al. [Fujimoto 18] is the first off-policy approach used to investigate the developed en-

vironment for learning EC grasping. A brief description of TD3 is presented in Section 2.3.2. Algorithm

2 presents the implementation details and mathematical definitions required while using TD3. These

details also include definitions for pseudocode functions specific to TD3 from Algorithm 1, namely

INITIALISE, GETACTION and UPDATE. TD3 uses six NN function approximator components, which

converge to an optimal behaviour solution using the reward schema from Section 5.2.2. This set of neu-

ral networks consist of the critic networks (Qθ1 ,Qθ2), their target variants (Q̄θ1 , Q̄θ2), the policy network

(πφ), and the target policy network (π̄φ). The two critic networks are present as TD3 applies a technique

known as clipped double Q-learning, which takes the minimum Q-value estimate between the two target

critics while updating, thereby avoiding overestimation. The NN architectures follow simple structures

defined in PyTorch. The critic networks follow a three-layered structure that takes in a vector {s + a}

and outputs a Q-Value as shown in Figure 5.3(b). The policy follows a similar structure using a state

vector s to generate an action a. Figure 5.3 displays these network structures alongside the activation

functions of each layer. The final output layer on the policy function NNs uses a tanh activation func-

tion, bounding the output between −1 and 1, before re-scaling the output to the action and observation

vector’s normalised range between −0.75 and 0.75 (Section 5.2.2).

TD3 is an expansion to the DDPG algorithm [Lillicrap 15], which enables the learning of continuous

control tasks in dynamic environments. Therefore, many of the aspects that update the various NN

modules come from definitions present in DDPG alongside the related algorithms of Deep Q-Network

(DQN) by Mnih et al. [Mnih 13] and Deterministic Policy Gradient (DPG) by Silver et al. [Silver 14].

Algorithm 2 displays the loss function for updating the critic networks (Qθ1,2), which uses a form of

the Mean-Squared Bellman error (MSBE) [Sutton 18]. The Bellman error, sometimes referred to as the

Bellman residual, is the difference between the target Q-value estimate (denoted as y) and the Q-value

Qθi(s, a). The estimation of the target Q-value y uses an augmented action value ã, which derives from

the target policy π̄φ(s′) with noise applied from a normal distribution. Fujimoto et al. [Fujimoto 18]

suggest applying the additional noise to sampled target policy actions as a method which smooths the

critic network updating process. Finally, the last step of clipped double-Q learning parses the augmented

action value ã through both target critic networks, after which the minimum value is chosen to calculate

y.

The policy takes in a state vector and generates an action vector using the NN structure visualised in
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Algorithm 2 TD3 Learning Functions

function INITIALISE(S = {Bs, γ, En, Nc, Pn, Pdel})
Initialise policy (πφ) and critic (Qθ1 , Qθ2) neural networks with weights φ, θ1 and θ2.
π̄φ ← πφ, Q̄θ1 ← Qθ1 , Q̄θ2 ← Qθ2 . Assign target variant weights from base neural networks
Save hyperparameter set S to local object memory
return

end function
function GETACTION(s)

a← πφ(s) + ε, ε ∼ N (0, c× En)
return a

end function
function UPDATE(D, Ns)

N ← D → GETBATCH(Bs) . Obtain Bs transitions (s, a, s′, r) from the replay buffer
ã← π̄φ(s′) + CLIP(ε,−c, c), ε ∼ CLIP(N (0, Pn),−Nc, Nc) . Augmented action ã created
y ← r + γ mini=1,2Q̄θi(s

′, ã) . Estimate target value y using minimum target critic estimate
Update critics Qθi ← argminQθiN

−1
∑

(y −Qθi(s, a))2 . Update critics via MSBE loss
if Ns mod Pdel == 0 then
∇J(φ) = N−1

∑
∇aQθ1(s, a)|a=πφ(s)∇φπφ(s) . The policy loss function using DPG

Update the policy πφ(s)← ∇J(φ)
Update the target networks via ‘soft updates’
Q̄θi ← τQθi + (1− τ)Q̄θi , for i = {1, 2}
π̄φ ← τπφ + (1− τ)π̄φ

end if
return

end function

Hyperparameters
Bs - Batch size: The number of transitions sampled by the replay buffer while updating.
γ - Discount factor: A constant value representing the impact of future rewards upon learning.
En - Exploration noise: A float defining a normal distribution when sampling actions while training.
Nc - Noise clipping: A constant that limits the maximum amount of noise while updating the policy.
Pn - Policy noise: A float defining a normal distribution for noise applied to actions from π̄φ(s′).
Pdel - Policy delay: An integer constant used to delay the policy and target network updates.
Other components
N (m,µ) - Generates values from a normal distribution with a mean of m and standard deviation of µ.
CLIP(i, l, u) - Limits an input value (i) to a range (l-u).
c - A value that defines the maximum action available from the environment.
ã - Refers to actions subjected to additional noise.
MSBE - Mean-Squared Bellman error

5.3(a) and uses a loss function based on the DPG algorithm [Silver 14]. A ‘soft update’ approach updates

the weights of the target networks by tracking their learned counterparts using the hyperparameter τ as

shown in Algorithm 2. Another suggestion by Fujimoto et al. [Fujimoto 18] was to delay the update

of the policy and target function approximators using Pdel to reduce overestimation bias and stabilise

training. For the implementation of the RL algorithms in this chapter, both the critic (Qθi) and policy
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(a) The policy network structure. (b) The critic network structure.

Figure 5.3: Network Structures used in TD3.2

(πφ) networks use the ADAM Optimiser [Kingma 14] when updating their weights.

SAC Algorithm

In addition to TD3, this chapter also implements SAC to evaluate performance and demonstrate that

the built environment of Section 5.2.2 is compatible with both off-policy approaches. Haarnoja et

al. [Haarnoja 18b] presented SAC around the same time TD3 became available, before publishing an

improved version [Haarnoja 18c], this updated version is implemented in this chapter. Similar to TD3,

SAC is an off-policy actor-critic algorithm. However, the RL objective of the actor and critic components

use the maximum entropy framework (MEF), which further impacts the derivation of the loss functions

for the NNs. In addition, SAC uses a stochastic policy rather than the deterministic approach of TD3.

One can describe the SAC as an algorithm, which learns a task while acting as randomly as possible.

Like TD3, SAC follows the learning process outlined in Algorithm 1. Algorithm 3 presents the unique

2The variable Hs refers to Hidden Size, a hyperparameter which determines the input/output size of the internal neural
network layers, defined in Table 5.1.
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components of SAC integrated into the learning process.

SAC follows a similar structure to TD3 when comparing NN modules. There are two critic func-

tion approximators (Qθ1,2) alongside a actor network (πφ). There are also target variants of the critic

NNs. However, unlike TD3 there is no target policy network. While developing the SAC implementa-

tion for EC grasping, the critic networks followed the same structure from TD3, Figure 5.3(b). How-

ever, while hyperparameter tuning and attempting to optimise SAC’s performance, this chapter found

adding another layer to the policy NN slightly improved learning. Therefore, the policy network for

SAC takes on a slightly different structure which Figure 5.4 visualises. The update of the target vari-

ants also uses ‘soft updates’. Incorporating the MEF into an actor-critic algorithm introduces some

fundamental changes. If one considers a standard RL objective as the maximisation of the expected

3The variable Hs refers to Hidden Size, a hyperparameter which determines the input/output size of the internal neural
network layers, defined in Table 5.2.

Figure 5.4: Network Structures used in TD3.3
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Algorithm 3 SAC Learning Functions

function INITIALISE(S = {Bs, γ, H̄, Tdel})
Initialise policy (πφ) and critic (Qθ1 , Qθ2) neural networks with weights φ, θ1 and θ2.
Q̄θ1 ← Qθ1 , Q̄θ2 ← Qθ2 . Assign critic target variant weights from base neural networks
Save hyperparameter set S to local object memory
return

end function
function GETACTION(s,Eval=False)

if Eval then
return a← πφ(s)

else
return ā ∼ πφ(s)

end if
end function
function UPDATE(D, Ns)

N ← D → GETBATCH(Bs) . Obtain Bs transitions (s, a, s′, r) from the replay buffer
ā′ ∼ πφ(s′)
y ← r + γ( mini=1,2Q̄θi(s

′, ā′)− α log(πφ(ā′|s′)))
Update critics Qθi ← N−1

∑
(y −Qθi(s, a))2 . Update critics via MSBE loss

ā ∼ πφ(s)
πφ ← N−1

∑
(α log(πφ(ā|s))− mini=1,2Qθi(s, ā)) . Update policy

α← N−1
∑

(−α log(πφ(ā|s))− αH̄) . Tune Entropy temperature
if Ns mod Tdel == 0 then

Update the target networks via ‘soft updates’
Q̄θi ← τQθi + (1− τ)Q̄θi , for i = {1, 2}

end if
return

end function

Hyperparameters
Bs - Batch size: The number of transitions sampled by the replay buffer while updating.
γ - Discount factor: A constant value representing the impact of future rewards upon learning.
H̄ - The minimum entropy constraint: A value defining the constrained optimisation

problem that tunes α
Tdel - Target delay: An integer constant used to delay the target network updates.
α - Temperature: A hyperparameter dictating the impact of the entropy term upon learning.
Other components
ā - Refers to actions generated from the policy with the reparameterisation trick.
Eval - A boolean that indicates whether the generated action will use the reparameterisation trick,

False if generating actions that are stored in the replay buffer or created when updating the
policy.

MSBE - Mean-Squared Bellman Error

rewards,
∑T

t=1 E(st,at)∼πφ [r(st, at)], SAC introduces the additional term of αH(πφ(.|st)) to the objec-

tive, where H represents the entropy measure and the temperature parameter α determines the impact

of the entropy measure on the learning objective. Such changes result in the new learning objective

J(π) =
∑T

t=1 E(st,at)∼πφ [r(st, at) + αH(πφ(.|st))].
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SAC’s integration of the MEF into results in a modified loss function that updates the soft Q-function

update, called the soft Q update. As Haarnoja et al. [Haarnoja 18c] discuss, the subsequent version

of SAC uses two critic networks to mitigate positive bias in the policy improvement step, similar to

TD3 [Fujimoto 18]. The loss function of the critic components follows a similar method to the critic

of TD3. However, the entropy term is considered when calculating the target Q-value y. As shown in

Algorithm 3, the term −α log(πφ(ā′|s′)) appends to the minimum estimate from the target Q-functions.

Haarnoja et al. [Haarnoja 18c] refer to this expression as the soft Bellman residual. Algorithm 3 reflects

this change that minimises the soft Bellman residual with a loss function that uses the Mean-Squared

Error. The articles of Haarnoja et al. [Haarnoja 18b, Haarnoja 18c] provide the appropriate proofs and

details for deriving the soft Bellman residual from the entropy-enhanced learning objective.

The update of the policy uses a modified loss function that also considers the MEF. The policy im-

provement step guides the policy towards greedy behaviour with respect to the exponential of the soft

Q-function by minimising the Kullback-Leibler (KL) divergence, such an approach results in the policy

loss function α log(πφ(ā|s)) − mini=1,2Qθi(s, ā) [Haarnoja 18b, Haarnoja 18c]. The policy optimi-

sation also makes use of the reparameterisation trick to ensure sampled actions are differentiable with

respect to the policy weights φ. Similar to TD3, all NN updates make use of the ADAM optimisation

algorithm [Kingma 14].

Finally, the learning process of the initial SAC version by Haarnoja et al. [Haarnoja 18b] could be

brittle to the temperature hyperparameter α, which dictates the entropy impact as the algorithm learns.

The subsequent version of SAC by Haarnoja et al. [Haarnoja 18c] presents automated entropy adjustment

approach that tunes α throughout training. This approach formulates a constrained optimisation problem

that satisfies a minimum entropy constraint (H̄), while maximising the expected return. In practice, an

ADAM optimiser object updates α with the loss function displayed in Algorithm 3.

5.2.2 Formulation

The development of this thesis presents custom versions of TD3 and SAC within ROS packages to exe-

cute the training process for EC grasping on the gripper. Both algorithms are off-policy approaches that

learn by collecting transition steps into a replay buffer, which the learning process samples throughout

training. These algorithms have seen success in learning skills such as turning a valve [Ahn 20], locomo-

tion [Zhu 22, Ahn 20] or mobile manipulation [Wang 20a]. However, these RL algorithms require both

an environment and reward function to discover the optimal policies.
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Building a Learning Environment

PyBullet [Coumans 16] hosts the deep learning environment for EC grasping and uses a ROS interface

to communicate with the RL algorithms. URDF files imported into PyBullet construct the simulation’s

physical components. Objects in the simulation include a Baxter robot with the lateral grasp-inspired

gripper attached to each hand and an environment surface to execute EC grasping motions upon. The

simulation incorporates several domain randomisation aspects, changing various simulation properties

that can potentially assist trained policies deployed in the real world by making them robust to dynamic

variance. Aspects randomised include simulation gravity, actuator velocities, communication latency, the

mass of the gripper links, and the friction properties of interacting components. Appendix D.1.2 presents

details surrounding the randomised components and their range of variance.

The environment surface uses four different URDF models with differing surface patterns subjected

to friction domain randomisation to provide a range of grasping surfaces with diverse contact interactions.

Figure 5.5 visualises the learning environment with these varying environment surfaces and the robot

agent. From a coding implementation perspective, an RL environment requires the functions of step

and reset and handles the creation of state and action spaces. The step function parses an action a to

create a transition tuple consisting of the previous state, last action taken, present state and received

reward (s, a, s′, r). The environment’s response to taken actions creates the state variables and informs

the received reward r. The reset function resets the simulator environment for a new learning trajectory.

In addition, the environment includes a modified hard-reset function which resets the simulation and

imports a new URDF environment surface while performing domain randomisation upon elements of

the simulation (Appendix D.1.2).

The RL formulation of learning EC grasping assumes an episodic nature, with the beginning of a

trajectory defined when the gripper pins the static plate into the environment surface, and the end occurs

once the manipulator reaches a grasping configuration after dragging along the environment. A grasping

configuration occurs when the sensor is registering force values and it’s position is upon the static plate

(calculable with FK expressions). Each trajectory while learning has a timeout limit of 25 seconds, which

will cause the trajectory to terminate if exceeded, this timeout is reduced to 7 seconds when executing

evaluation trajectories that gauge learning progress.

The environment class structure defines the action and state vectors upon initialisation. The action

space is the eight commands required to control the gripper, and the observation vector consists of 24 ele-

ments. The observation vector includes present joint positions, velocities, the forward kinematics (to the
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Figure 5.5: The learning environment in PyBullet with various surface textures.

sensor position), the present commands targets (i.e. target joint position, speed and current), the force sen-

sor readings, wrist orientations (roll-pitch-yaw angles, RPY) and the distance travelled while navigating

the environment. Like the observation space vectors defined in the ROBEL benchmark suite [Ahn 20],

the state vector includes the last actions taken. The logic behind this choice was due to the partial ob-

servability common in robotic systems (Section 2.3.3). In addition, the commands sent to the actuators

will influence manipulator behaviour and play a role in the present state of the device. These observation

and action vectors normalise their values between −0.75 and 0.75 before being processed by the NN

function approximators. Appendix D.1.1 presents the state and action variable information alongside the

value range used for the normalisation process.

The operation of the environment during learning uses a ROS framework to transmit the latest feed-

back from the gripper through a custom message format, see Figure 4.16. Such an approach simplifies
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the integration of policies onto hardware as the ROS interface remains consistent regardless of platform.

This approach also enables the simulation node to use in-built protections that restart the program if fail-

ures occur during long term training. In addition, ROS action servers and service requests communicate

data between the learning process and environment behaviour. For example, the reset function of the en-

vironment calls a ROS action server, which informs the PyBullet simulation to reset the pose of the robot

arm that last performed a learning trajectory. The policy also communicates with the agent (simulated

gripper) at a rate of 10Hz.

Throughout learning, the environment will place both arms of the simulated Baxter robot into a

position where a learning trajectory can occur. While training, a single trajectory will occur with the

gripper upon one of the arms. Upon resetting, the gripper on the alternative Baxter arm will perform

another trajectory, while the original arm is resetting its pose. This process continues throughout training,

with both arms placing the gripper in a random pose for a new learning trajectory. If performing a hard

reset, an action server call informs the simulation node to remove and re-import all URDF files with a

domain randomisation step. Figure 5.6 visualises the ROS framework for training and controlling the

simulation.

This chapter establishes policy convergence to an arbitrary grasping solution, a learning challenge

that requires the orientation of the manipulator. The observation vector s uses RPY values representing

this orientation. For the simulated environment and hardware deployment, it was convenient to represent

the wrist orientation through the Baxter robot’s URDF file and in-built kinematic solvers. In addition,

this approach used an established coordinate system provided by the Baxter’s ROS packages and URDF

descriptors that provided uniformity across the simulation and hardware. The RPY values were taken

from the transform sequence between the Baxter robot’s base frame and wrist pose of each arm. In ad-

dition, these RPY values derive from the rotation matrix using the Cardanian ZYX sequence [Corke 17].

This method was convenient as the only relevant information for learning arbitrary grasping was the

manipulator’s orientation relative to the environment surface, which lies parallel to the xy plane of the

Baxter’s base frame. Therefore, the observation vector discards the first rotation value from the Carda-

nian ZYX RPY calculation and only uses the remaining y and x rotation values. Thereby only using the

rotation data relevant to the manipulator’s orientation relative to the environment surface.
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PyBullet Shared Memory

Simulation
and Arm

Control Node

Gripper
Control Node Learning Node

ROS Parameter Server
/right_arm_is_resetting - Indicates whether the right arm is in a resetting motion, is false when ready for learning interaction.
/left_arm_is_resetting - Indicates whether the left arm is in a resetting motion, is false when ready for learning interaction.
/gripper_node_active - Indicates whether the gripper control node is operating and ready for learning interaction.
/simulation_is_operational - Indicates if the simulation is operating correctly for the learning process.

Reads ROS parameters
to inform simulator

state.

Updates ROS Parameters

Topic: /randle_sim_left/randle_target
Topic: /randle_sim_right/randle_target

Sends target commands to gripper node.

Topic: /randle_sim_left/randle_state
Topic: /randle_sim_right/randle_state

Sends gripper feedback to learning node.

Service: /disable_grippers
Service: /reset_grippers

Learning node can request a disable and
reset action on the simulator grippers.

Action Server: /left_arm/reset
Action Server: /right_arm/reset

Action Server: /reset_environment
Learning node interacts with action servers

that resets both the arm poses and the complete
simulation when required.

Figure 5.6: The ROS framework that interfaces the simulation with the off-policy learning process.
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Figure 5.7: The triaxial force sensor with its sensing coordinate frame and centre-point highlighted.

Developing the simulation was an iterative process that encountered the reality-gap (introduced in

Section 2.3.3) challenges one expects when training policies in simulation deployed directly onto hard-

ware. Domain randomisation techniques can assist with these challenges. However, one particular hurdle

presented difficulties when transitioning from the simulation to the real world. The sensor attached to

the TCP of the manipulator uses deformations in quasi-deformable materials to estimate exerted forces,

resulting in several behaviours that were difficult to replicate in simulation. Figure 5.7 displays the sen-

sor, its measurement coordinate frame and a visualised centre-point of the rubber component. As contact

moved away from this centre-point, non-linear behaviours in the force readings became apparent, which

could not be replicated in simulation. However, PyBullet does allow developers to access collision lo-

cations and exerted forces within rigid bodies, which allows users to write custom data pre-processing

functions. Following hardware experimentation and an assessment of simulation capabilities, the opti-

mal solution to move the simulator closer to the hardware’s behaviour emerged: solely utilising the force

readings from the z-axis of the sensor (see Figure 5.7).

While this approach closed the gap between the sensor’s real world behaviour and the simulation,
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such a methodology still required further considerations. The visualised centre-point of Figure 5.7 is

where the sensor’s force readings are most accurate, as this location is where the device’s manufactur-

ing calibration sequence took place. However, as contact points move away from the centre, the force

read in the z-axis degrades and decreases compared to the actual force applied. Examination of the

sensor discovered that if contact upon the rubber occurred further than 4mm from this centre-point, the

sensor would not register applied forces upon the z-axis. As PyBullet can simulate rigid bodies force

interactions and collision locations, the simulated learning environment replicates these behaviours. To

develop robust policies, the domain randomisation function changes an exponential expression defining

the degradation behaviour of the simulated sensor readings. Thereby exposing the policy to a wide range

of non-linear force readings throughout training.

Formulating a Reward Function

The reward function provides a mechanism that guides the RL algorithms to execute arbitrary grasping

by providing a numerical reward or penalty between states. The applied RL algorithms attempt to execute

a behaviour that maximises the received reward across a trajectory. Using the observations outlined in

Section 5.1.1, which discusses observations from Eppner et al. [Eppner 15] and previous grippers, the

formulated reward function encourages the gripper’s ‘fingertip’ to make contact with the environment

surface, traverse across the surface and close the gripper into a grasp pose. If following this desired

sequence of motions, the learning algorithm will receive several positive reward values. Alternatively, if

the gripper performs a behaviour moving away from a grasping configuration or abandons a traversing

motion along the environment surface, the reward function will return negative penalising values.

The reward function is a class structure that tracks information throughout the trajectory, including

the accumulated reward while grasping, whether contact with the environment is occurring, and the

distance traversed across the environment. This stored information then informs the received reward for

each transition step. A reward-shaping methodology assists the learning algorithms in converging to the

desired EC grasping motion. The gripper begins each trajectory with the bumper sensor of the static

plate in contact with the environment and the gripper in a default configuration as visualised in Figure

5.2. These rewards are a function of the triaxial force sensor and the gripper’s forward kinematics that

consider the position of the sensor (t) relative to w given by Equations 4.12, 4.13, 4.14 and 4.154. Figure

5.8 displays the essential coordinate frames used by the reward function with h defining the position of

4t and As from Chapter 4 are the same coordinate frame.
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Figure 5.8: A visualisation of key components of the gripper learning setup.

the gripper’s static plate.

Upon beginning a trajectory sequence, the only reward the gripper can receive is when it makes

initial contact with the environment. Defining this action simply uses the position of t and readings

from the triaxial force sensor. If the sensor registers a force value along tz above or equal to 0.8N

and the sensor’s position is significantly above the location of the static plate, the reward considers this

interaction as contact with the environment. Developing the reward function was an iterative process and

found that a threshold of 0.8N was acceptable. To determine whether the sensor’s position was above

the plate, the z displacement of t relative to w (Equation 4.14) had to exceed 3mm.

Once the gripper has made contact with the environment, rewards or penalties occur based on travers-

ing actions. Traversing actions are transitions between states where contact with the environment is still

present, meaning that the sensor is still reading a force value along tz above 0.8N , while fulfilling the

kinematic conditions outlined in the previous paragraph. However, the position of t relative to h has

changed. If the sensor has moved closer to h, the reward function returns a positive value based on the

Euclidean distance reduced between t and h. Alternatively, if this Euclidean distance between t and h

has grown, the reward function returns a penalising value reflecting this increase.

The class structure hosting the reward function tracks the Euclidean distance between t and h tra-

versed by the manipulator throughout a surface dragging motion. If the gripper abandons a traversing
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motion and lifts the sensor from the environment surface, the reward structure resets this distance to 0.

Before closing into a grasp, a traversing motion must reduce the Euclidean distance between t and h by

15mm from the initial contact point while dragging along the environment. Assuming that the gripper

has met the inward distance traversing requirements, the final component of the grasping trajectory is the

grasp closure motion. Grasp closure is detected when the sensor’s position is upon the static plate and

the sensor registers an applied force greater than 1N .

There are a number of circumstances, which could interrupt a grasping attempt. Examples include

closing into a grasp without traversing inward along the environment for the required 15mm or aban-

doning a traversing action by lifting the sensor from the environment surface. Under these situations, the

reward function penalises the positive accumulated reward from the traversing action. In addition, the

distance traversed and other grasping details gathered throughout the grasping motion are reset to 0 such

that the reward structure is setup for a new grasping attempt within the episode. The reward function

returns 0 when the gripper is in a grasping configuration without interacting with the environment and

when the gripper is searching for initial contact with the environment. Algorithm 4 in Appendix D.2

provides pseudocode, which outlines the reward function alongside the specific values it returns under

various circumstances.
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5.3 Results - Simulation

Both TD3 and SAC performed training in the simulated environment of Section 5.2.2 across five seeds,

Figure 5.11(a). Figure 5.9 visualises the training progression for each seed under TD3. TD3 learned to

perform EC grasping under the hyperparameters outlined in Table 5.1 by colliding with the environment

and traversing inwards to a grasp across the five seeds displayed in Figure 5.9. However, converging to

this solution was a time-intensive process. As Figure 5.9 displays, converging to the grasping solution

could take between 25 and 200 hours. With further hyperparameter tuning, the algorithm may converge

in a more time-efficient manner. These figures also show the learning process converged to a solution

that usually received a reward of approximately three in evaluation procedures, given the reward scaling

(rs) value of 0.015 used.

Unfortunately, SAC did not see the same success TD3 achieved when attempting to learn EC grasp-

ing. Figure 5.10 visualises the training process. Despite an exhaustive parameter search, the training runs

conducted in this thesis were unable to converge SAC to appropriately learn EC grasping reliably across

seeding, Figure 5.11(b). Figure 5.10 shows how two of the seeds (1547 and 2307) managed to converge

to partial-solutions that were improving their evaluation scores. However, these training runs were still

unable to converge to a complete grasping solution, resulting in policies that saw an evaluation score of

roughly 1.5. Had a successful grasping solution been found, this score would have exceeded a value of 2,

and usually expected to float between 3 and 4. The remaining seeds failed to converge to a solution, with

evaluation rewards ranging between 0-0.5. Upon closer inspection, several of these policies converged

to solutions that avoided negative penalties, resulting in policies that took no actions and simply did not

interact with the environment. An example, which demonstrates such a solution best, is the training run

with a seed value of 9008.

TD3 being capable of converging to an EC solution while SAC struggles could be due to several

factors. First, SAC is an algorithm that usually places a strong emphasis on exploration by incorporating

the entropy term into the objective function. While beneficial in certain environments, the constructed

environment of Section 5.2.2 may not have required a high degree of exploration. While training, the

automated tuning of the hyperparameterα5 usually converged to a near-zero value across all SAC training

runs within the first 200,000 steps, further reinforcing this notion. The value of 0.95 given in Table 5.2

refers to the initial value of α before the tuning process throughout training occurred.

In addition, the deterministic policy of TD3 and it’s exploration methods may have been more suited

5This hyperparameter is a value that determines the impact of the entropy term upon training.
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to the simulated EC grasping environment. As previously mentioned throughout this chapter, biomimetic

grasping motions take on a similar form [Heinemann 15], and the possibility remains that learning the

motions of arbitrary grasping, even with the different trajectories required for the various wrist orien-

tations, may have been an RL problem where the entropy incorporation of SAC hindered the learning

process. There are further hyperparameter tuning options that could improve the performance of SAC in

the simulated learning environment. For example, this implementation of SAC sets the minimum entropy

constraint (H̄) hyperparameter to the value of −dim(a), the negative dimension of the action space, as

previous authors have recommended [Haarnoja 18c, Wang 20b]. Exploring alternatives for H̄ alongside

adjusting parameters including the reward scaling rs, neural network architectures and other hyperpa-

rameters may yield an improved training process for SAC in the simulated environment of Section 5.2.2.

The training processes in simulation also highlighted a number of limitations in the EC grasping

environment that could benefit from improvement in future developments. To start with, domain ran-

domisation for the table surface friction, force sensor body friction, and the table orientation all use a

pseudo-random number generator (PRNG) algorithm to generate environment variables upon each en-

vironment hard-reset. While such an approach was acceptable to learning EC grasping, especially for

TD3, a hand-crafted approach to ensure that the environment traversed across a wide range of dynamic

variables may improve the learning process. Figure 5.9 shows that in some training runs, the evaluation

process sees a significant drop in score. Indicating that the learning process occasionally encountered

environmental conditions in which the policy struggled to perform. By ensuring that a comprehen-

sive range of dynamic environment conditions were encountered, this training process may improve the

policy’s resilience to environmental factors. Despite these limitations, the learned policies under TD3

remain acceptable to evaluate on the hardware platform, grasping fabric using learned policies directly

from the simulated environment.



5.3.
R

E
SU

LT
S

-SIM
U

L
A

T
IO

N
179

Table 5.1: The hyperparameters of applied TD3 algorithm

Hyperparameter Value
Bs The batch size, a hyperparameter that dictates

how many samples are taken from the replay buffer
during NN updates.

256

En Exploration noise, a constant that defines the
standard deviation of a normal distribution which
samples noise appended to policy-derived actions.

0.05

γ The discount factor, a constant value that
determines the impact of future rewards
beyond the present transition.

0.99

Rs Number of steps taken before a new environment
hard-reset event occurs. 4000

Hs Hidden size, a hyperparameter that dictates the
input and output sizes of NN layers that the entry
or output points of the function approximator.

256

lr Learning rate, a constant value that governs the
pace of NN optimisation. 0.0001

Nc Noise clip, a value that limits noise applied to
augmented actions that TD3 uses while training
the critic networks.

0.25

Ts The total number of environment transition steps
performed throughout the learning process. 5000000

Pdel Policy delay, a constant that delays policy and
target network updates for a certain number of steps. 2

Pn A float constant defining the standard deviation
of a normal distribution.. 0.1

Dlen Maximum size of the replay buffer. 1000000
rs Reward scaling, a constant multiplier applied to

received rewards from the environment. 0.015

τ A constant defining the rate of the ‘slow-moving
update’ process for the target networks. 0.005

U Update steps performed after a trajectory. 250
Is The number of initial steps in which the policy

samples random actions. 1024

Ms The number of episodes between saving NN weights. 600
Es The number of steps between evaluation procedures. 12000

Table 5.2: The hyperparameters of applied SAC algorithm

Hyperparameter Value
Bs The batch size, **See definition in Table 5.1** 1024

γ The discount factor, **See definition in Table 5.1** 0.97

α The initial temperature parameter value, determines
the impact of the entropy term upon the learning
objective.

0.95

Rs **See definition in Table 5.1** 5000

Hs Hidden size, **See definition in Table 5.1** 256

H̄ The minimal expected entropy, a value defining the
minimum entropy constraint.

-dim(a)

lr Learning rate, **See definition in Table 5.1** 0.0003

lrα Learning rate for the ADAM optimiser that
tunes the entropy term α

0.00005

Ts **See definition in Table 5.1** 10000000

Tdel Target delay, An integer constant used to
delay the target network updates

2

Dlen **See definition in Table 5.1** 1000000

rs Reward scaling, **See definition in Table 5.1** 0.02

τ **See definition in Table 5.1** 0.005

U **See definition in Table 5.1** 250

Is **See definition in Table 5.1** 4096

Ms **See definition in Table 5.1** 1000

Es **See definition in Table 5.1** 50000
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Figure 5.9: The hours of training and steps taken while learning with TD3 under various seeds using hyperparameters from Table 5.1.
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Figure 5.10: The hours of training and steps taken while learning with SAC under various seeds using hyperparameters from Table 5.2.
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(a) TD3 (b) SAC

Figure 5.11: The average reward, along with the standard deviation visualised, is shown across the training seeds for each algorithm.
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5.4 Results - Hardware Deployment

A key aspect of this chapter is the deployment of polices from the simulated URDF model to the hard-

ware platform. As the implementation of SAC struggled to converge to an EC grasping solution, this

chapter directly deploys TD3 (seed 5738) to the hardware and evaluates EC grasping in the real world.

Such a method encounters challenges associated with the reality-gap, a degradation in performance when

transferring simulation-trained policies into the real world. The hardware evaluation took place by plac-

ing a flattened garment on a table beneath the gripper6. The Baxter robot would move the gripper to

pin the fabric to the table before letting the trained policy control the gripper, executing a grasp. Initial

grasping motions were executed upon the hardware to ensure that the evaluation could take place safely

on the hardware before this evaluation took place. This process resulted in several heuristic adjustments

were made to the hardware prototype and the sensor feedback data. First, the gripper would sometimes

place the triaxial sensor in a position where all environmental contact occurred at the edge where the

rubber met the rigid body of the sensor. As the rubber and rigid body connect via an industrial adhesive,

a small 3D-printed cover was placed over this region to prevent incidental contact prying the rubber off

the rest of the sensor.

While grasping from hardware, it remained simpler to extrapolate the wrist orientation component

from transforms defined by the Baxter robot. As the wrist orientation forms part of the state vector (see

Section 5.2.2) and the simulated environment used the Baxter’s URDF transform data, this approach

was a convenient method to transfer the learning process into the real world. In addition, the policies

deployed on hardware use augmented triaxial force sensor readings to improve EC grasping motions. In

the simulated environment of Section 5.2.2, force readings upon the z-axis of the sensor (see in Figure

5.7) greater than 0.8N were considered an environment interaction transition assuming kinematic condi-

tions were met. The sensor degrades in accuracy as contact moves away from the centre-point visualised

in Figure 5.7, therefore the hardware deployment applied Equation 5.1, in which Fx, Fy and Fz are

the original sensor readings of the triaxial force sensor. Fza parses through the neural network during

training. Figure 5.12 visualises the value of mt given Fz lies between 0.4 and 1.44 when applying Equa-

tion 5.1. The policy trained in simulation recognises read Fz values greater than 0.8N as interactions

traversing the environment, enabling the policy to treat lower real world values of Fz as similar traversing

events for improved EC grasping.

6Associated media files of the hardware deployment can be found at the author’s personal website:
https://robodave94.github.io/.
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Figure 5.12: A plot of the exponential multiplier (mt) applied to Fz from the real world sensor data given
Fz lies between 0.4 and 1.44.

mt =


(
−1. 1

(
1. 42Fz

)
+ 3. 9

)
if 0. 4 ≤ Fz ≤ 1. 44

1 otherwise

Fza = mt · Fz + Fx
2 + Fy

2

(5.1)

The grasping evaluation occurred across 16 wrist orientation positions with six different garments,

see Figure 5.13. Each grasp was attempted three times, therefore, this hardware evaluation attempts 288

EC grasping trajectories on the hardware. Figure 5.14 visualises one of these EC grasping attempts upon

a scarf. Table 5.3 displays the results of EC grasping with the fabricated gripper. The amount of transition

steps taken is reflected in each cell representing a grasp attempt. Similarly to the simulation environment,

the policy communicates with the hardware platform at a rate of 10Hz. The Table highlights the rate of

successful grasps alongside displaying the duration of the grasping attempts across wrist orientations and

garments. In addition, Table 5.3 highlights the wrist orientation of the manipulator while grasping with

the variables Wz and Wy. These variables represent radian values applied to the wrist orientation. Thereby

moving the gripper towards the flattened garment in a diverse range of positions. If one considers framew

from the DH parameters of Table 4.1, the orientation of the manipulator while grasping, is calculable via

the transform sequence w · Ry(π2 )Rz(Wz)Ry(Wy). At a high level, this sequence represents orienting

the gripper downwards towards the table before applying the rotations of Wz and Wy sequentially.
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(a) Long-Sleeved Black Top (b) Scarf

(c) Heavy Jumper (d) Jean Shorts

(e) White-Collared Shirt (f) Black Chino Trousers

Figure 5.13: The target garments for EC grasping with the real-world gripper.
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Table 5.3: Results of hardware EC grasping using TD3.

Black Cotton
Shirt

Red
Scarf

Thick
Jumper

Jean
Shorts

White-Collared
Shirt

Black Chino
Trousers

Angle
code

Wz
(rad)

Wy
(rad) T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Angle
Success
Rate (%)

Angle
Success
Duration

(s)
A -0.552 -0.524 58 94 63 63 52 94 71 48 32 54 74 44 42 42 55 58 48 43 0.94 5.9
B -0.184 -0.524 181 63 73 34 115 59 47 86 33 42 68 46 33 41 88 60 57 43 0.89 6.39
C 0.184 -0.524 41 50 33 36 63 64 115 65 44 45 38 45 37 97 36 93 71 35 1 5.6
D 0.552 -0.524 46 47 159 169 82 63 87 85 70 26 87 41 120 117 80 81 40 94 0.94 8.29
E -0.552 -0.367 104 67 49 71 29 66 71 39 77 53 48 39 46 59 38 41 64 43 1 5.58
F -0.184 -0.367 37 40 31 24 44 56 48 34 70 56 59 38 48 39 40 35 31 50 1 4.33
G 0.184 -0.367 33 35 73 37 79 33 122 71 69 63 40 33 31 32 51 37 102 29 0.83 5.17
H 0.552 -0.367 40 50 41 63 250 65 39 48 37 48 39 62 49 40 37 148 52 37 0.89 5.29
I -0.552 -0.209 75 28 197 53 58 29 95 77 98 43 59 83 174 50 51 32 42 221 0.94 8.16
J -0.184 -0.209 34 70 37 38 32 65 43 67 118 62 77 137 112 106 27 39 33 59 0.94 6.41
K 0.184 -0.209 69 48 33 35 57 28 61 28 59 25 56 26 31 75 28 81 92 40 0.78 5.12
L 0.552 -0.209 68 71 144 250 143 73 184 73 74 91 66 64 89 70 27 49 62 129 0.78 8.97
M -0.552 -0.052 31 62 43 28 109 27 53 52 18 27 48 103 101 76 60 30 29 36 0.94 5.33
N -0.184 -0.052 250 76 35 126 40 64 33 36 26 55 250 63 55 29 46 42 107 23 0.89 5.35
O 0.184 -0.052 37 96 33 69 36 206 115 87 212 26 87 74 32 25 24 36 24 42 0.83 6.05
P 0.552 -0.052 156 126 250 250 250 69 65 250 81 75 250 250 250 116 250 67 250 250 0.44 9.44

Trial Success
Rate (%) 0.94 0.94 0.94 0.88 0.88 1 0.88 0.69 0.88 0.69 0.69 0.75 0.94 1 0.94 0.94 0.94 0.94

Garment Success
Rate 0.94 0.92 0.82 0.71 0.96 0.94

Garment Success
Average Duration

(s)
6.73 6.47 6.33 5.98 5.87 5.88

Notes
The integer taken for each grasp indicates the number of steps taken. Transition steps occurred at 10Hz. Every grasp attempt was given a 25 second time limit.
Grasps highlighted in red indicate cases where the gripper did not grasp the material correctly.
Each garment grasping process underwent three trials and each trial is referenced with the bold text on the second row. For example, T1 refers to Trial 1.
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(a) (b) (c)

(d) (e)

Figure 5.14: The gripper grasping a scarf using a TD3 policy trained only in the simulation.
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As Table 5.3 shows, the policy when deployed on hardware grasped flattened clothing from the

environment at a success rate above 70%. Interestingly, the average successful grasping duration across

garments varied within a second, with the white-collared shirt exhibiting the lowest value of 5.87 seconds

and the black cotton shirt taking 6.73 seconds. However, when comparing the duration of successful

grasps across wrist orientations, the average duration varied within a range of around 5 seconds, with

angle F taking 4.33s and angle P taking 9.44s. These combined observations reinforce that EC grasping

motions use similar forms and that the evaluated policy had learned to grasp more effectively for specific

wrist orientations. The actual target garments had little impact on the duration of grasp. Furthermore,

when comparing success rates across angles to the duration taken, there does not appear to be a strong

correlation between the time taken and the success rate. However, the angle with the lowest successful

grasping rate (P) took the most prolonged average duration to grasp.

While the garments did not demonstrate variability when considering the duration taken, the success

rates across clothing items ranged between approximately 71% success for the jean shorts and 96% for

the white-collared shirt. Several observations presented themselves surrounding the proposed RL ap-

proach while deploying TD3 upon the hardware. Failure could occur for a number of reasons. In some

cases, the torque of the gripper’s thumb appendage was capable of lifting the Baxter’s robot arm, which

would lift the static plate from pinning the garment to the table surface. Such a situation would result

in the gripper sliding fabric along the environment surface rather than producing protrusions. Alterna-

tively, certain collision interactions would cause the stepper motor to skip steps, affecting the kinematic

calculations required for policy operation.

Some garments exhibited a low elastic energy and would hold the garment’s state from applied ma-

nipulations. If the gripper attempted multiple biomimetic grasping motions, this property would improve

grasping success as protrusions made by previous dragging motions would retain their shape and pro-

vide more regions on the garment’s body for the thumb appendage to close the grasp. However, garments

like the jean shorts demonstrated mechanical properties with a higher elastic energy due to the type of

material, the weave or the garment’s construction properties, which means that when protrusions or de-

formations made by previous dragging motions within a trajectory occurred, the garment would not hold

this form and partially revert to the flattened state. This non-linear mechanical behaviour results in the

gripper still completing grasping motions but producing less prominent protrusions to secure a grip on

the garment. Table 5.3 shows how the jean shorts saw more failed grasp attempts while still completing

the grasping motion, as failures occurred while performing under 250 transition steps.
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5.5 Discussion

This chapter presented the inspiration, formulation, development and integration of a reinforcement

learning approach towards environmentally constrained grasping. Driven by observed human-centric

behaviour of dexterous grasping, a reward schema encouraging the gripper to traverse the environ-

ment resulted in simulation-trained policies able to grasp clothing in the real world with an accuracy

above 70%. Research from the literature discussing grasping with environmental constraints [Heine-

mann 15, Eppner 15] inspired the reward schema and notion of EC grasping motions remaining similar

in form, inferring that a simulation that learns the motions should remain applicable to grasping flattened

clothing in the real world.

The total success rate was approximately 88% across the 288 hardware grasping motions performed.

Despite the policies remaining capable of grasping in the real world, the average duration of successfully

grasping flattened fabric was approximately 6.3 seconds and usually involved multiple dragging motions.

In a practical deployment setting, this behaviour is not optimal and further work is required to refine the

trained policies. However, considering the range of difficulties associated with the reality-gap, it is still

encouraging to see the policies trained purely in simulation grasp fabric at such a high success rate when

deployed to hardware.

5.5.1 The Resultant Model

This chapter focused on reinforcement learning and evaluation of off-policy models for EC grasping

of clothing in the real world. Although the results were promising, there are limitations that must be

addressed to make this approach practical. The training process for learning EC grasping in the simulated

environment was time-intensive, as shown in Figures 5.9 and 5.10, with an average training time of 500

hours or more. However, Figure 5.11(a) shows that TD3 achieved a solution (on average) at around

350 hours before continuing to train for the user-determined number of steps (refer to Ts in Table 5.1).

Furthermore, SAC’s failure to find a solution highlights that off-policy approaches are not guaranteed to

learn arbitrary grasping with the gripper of Chapter 4.

It is possible that the challenges faced during the learning process are not due to deficiencies in the

process itself, but rather to the limitations of the sensor integration on the robot manipulator. As discussed

in Section 5.2.2 and illustrated in Figure 5.7, it was difficult to replicate the behaviour of the TCP sensor

in simulation. To address this, some compromises were made, resulting in the sensor having a small cone



190 CHAPTER 5. NOVEL SKILLS FOR ENVIRONMENTALLY CONSTRAINED GRASPING

of operation (approximately 10mm of available surface area contact on the sensor). As a result, rewards

could only be reliably obtained when dragging inwards and when the small detection zone was in contact

with the environment. Despite these limitations, the success of TD3 is encouraging, especially since no

design optimisation process has been conducted on the gripper and sensor configuration.

After successfully deploying a trained TD3 policy to hardware, certain interesting aspects of the

system came to light. As shown in Table 5.3, angle P took the longest to execute the grasp and showed

the lowest success rate. Although a more detailed ablation study is needed, several possible reasons can

be considered. One reason could be that creating random wrist orientations during training creates two

linearly spaced vectors across the possible orientations of Wy and Wz. The wrist orientation is obtained

by sampling these vectors without replacement. This approach may cause difficulty learning certain

grasping aspects when the wrist orientation is close to the possible orientation limits. Another possibility

is that the particular seed (5738) used on hardware did not effectively learn grasping at angle P.

5.5.2 Options for Further Exploration

After conducting this investigation, the resultant model presents several opportunities for further explo-

ration that can lead to improved autonomous manipulation of fabrics. Unfortunately, the Ph.D. timeline

restricted the research focus, so a broader scope was not possible right now. However, one immedi-

ate step to build upon this research is to continue learning the hardware in an analogous manner to

Haarnoja et al. [Haarnoja 18a]. Alternatively, there are various training algorithms available to explore

for learning EC grasping, including on-policy approaches [Schulman 17], demonstration-based learn-

ing [Rajeswaran 17], or image-based control [Yarats 21]. These approaches could be more effective in

learning dexterous grasps that leverage the environment.

The first step before further improving the learning process is to upgrade the gripper’s TCP sensing

configuration. The current sensing configuration on the fingertip is limited, which makes it challenging

to create a hand-crafted reward signal. While the desired grasping behaviour was successful, an updated

sensing configuration may benefit future expansions of this chapter. Due to the timeline and budget

constraints within the Ph.D. program, integrating the triaxial force sensor as it currently stands was the

appropriate course of action.

However, some considerations occurred during the development process which should be high-

lighted. The sensor could only detect traversing events when the centre point of the sensor or close

regions registered contact. A fingertip-sensing configuration that detects applied forces across the en-
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tire thumb’s body could improve EC grasping. Additionally, a multimodal sensing device may assist in

performing biomimetic grasping motions under more complex settings, such as extracting a single item

from a stack or registering surface texture features. Expanding the design thinking framework to en-

compass sensing requirements could yield valuable insights surrounding EC grasping and broader textile

manipulation.

5.5.3 Further Takeaways

The training in simulation and deployment to hardware highlighted several considerations for future

investigations of EC grasping motions. RL is a challenge in balancing the exploitation vs. exploration

issue within a learning process [Sutton 18]. From the simulated training results, it appears that learning

EC grasping in the simulation environment of Chapter 5 may be a learning challenge requiring little

exploration, as SAC, an algorithm known for emphasising exploration, failed to converge to a grasping

solution. However, some adjustments could be made to the simulated environment to improve training,

including handcrafted approaches to ensure a wide range of dynamic conditions were encountered, as

opposed to the PRNG approach. In addition, the trained policies for TD3 and SAC could benefit from

further investigation into simulation refinement, so it more closely resembles the hardware platform

and fabric interactions in the real world. Alternatively, refining the hyperparameters further could yield

results that encourage SAC to converge successfully in the environment of 5.2.2. Finally, the issue of

excessive training run-times under the current setup remains present. Further hyperparameter tuning,

code-level optimisations, or multi-agent implementations may assist in optimising the training duration.

The deployment to hardware also revealed a number of limitations, which one should consider when

further exploring EC grasping behaviour on real-world systems. As mentioned in Section 5.4, the force

exerted by the thumb appendage while pressing into the environment was sufficient to lift the arm, remov-

ing the static plate from the table and ‘unpinning’ the garment. In this particular case, the combination of

Baxter robot’s underlying control system combined with the gripper behaviour resulted in this situation

occurring. However, it still highlights that the manipulator’s actions will impact arm behaviour while

performing biomimetic grasping in this case. Meaning that manipulator actions cannot be completely

decoupled from the arm.

In addition, the open-loop nature of the prismatic rail driven by the stepper motor impacted real world

grasping. Replacing the stepper motor with an appropriate closed-loop actuator would also improve

hardware grasping success. Finally, while exploring EC grasping, niche scenarios saw the gripper failed
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to grasp or produce a protrusion in the fabrics body due to the configuration of the garment near the grasp.

Heavy regions of garments such as the waistband of pants impacted grasp success. To address this issue,

exploration of computer vision algorithms to find the optimal grasp points on a garment’s flattened body

could present an interesting research challenge. Alternatively, EC grasping motions exerting a greater

force against the environment is another viable approach.

5.6 Conclusion

The broader implications of this research indicate that EC grasping of a single flattened garment is a chal-

lenge solvable via data-driven approaches. The resultant RL policies and their capabilities were made

possible by building a reward schema using human-centric characteristics observed in the literature [Epp-

ner 15]. While limitations were present in the solution of this chapter, policies transferred directly to the

real world proved capable of executing reliable grasping of various garments with differing mechanical

properties. This success adheres to the observation of Heinemann et al. [Heinemann 15], who describe

how the closing motions of EC grasping take on a similar form. The hardware evaluation saw variance

in successful grasp rates between garments that ranged between 71% and 96%. Demonstrating that the

diverse non-linear mechanical behaviour of different garments will have impact on grasping success.

However, design refinement on the existing gripper and RL algorithm optimisation could see improve-

ment building upon these initial results.

Expanding this reinforcement learning approach to EC grasping presents an opportunity to explore

investigation avenues which could take many forms. An immediate example building upon the present

learning configuration is the development of policies that learn arbitrary grasping with a TCP wrench

control mechanism. The environment formulated in Section 5.2.2 uses a threshold value of 0.8N . As-

suming the correct kinematic conditions are met, registering a collision above this threshold is considered

contact with environment. Adapting the RL algorithm to target varying force thresholds could result in

more robust grasping policies. An example feature to explore this aspect includes Hindsight Experi-

ence Replay (HER) [Andrychowicz 17]. Further expansion research could investigate an alternative

sensing setup as discussed in Section 5.5. Alternatively, Ono et al. [Ono 01] explore the complexities

of biomimetic grasping motions that extract a single fabric item on a stack. Such a challenge could

be addressed by building upon the approaches presented while incorporating new aspects into the RL

formulation and sensing modalities.
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This chapter concludes the research of this thesis. Building upon the efforts of Chapters 3 and

4, a human-inspired RL approach encouraged the gripper to perform grasps that leverage the environ-

ment with RL, which Eppner et al. [Eppner 15] describe as a fundamental capability contributing to the

generalised manipulation capabilities of humans. There are a range of further human-inspired textile

manipulation skills that require exploration, which could build upon the research conducted throughout

this thesis.
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Chapter 6

Thesis Conclusion

6.1 Research Summary

The motivating force behind this research was the current state of post-consumer textile waste. As a

result of fast fashion and current industry practices, the ever-increasing amount of discarded clothing

waste is damaging the environment, wasting the resources used to manufacture them, and contributing to

CO2 emissions through decomposition. Despite available chemical processes, which can recycle cloth-

ing, humans still send an enormous amount of garments to landfills and poorer nations as Section 1.1

outlined. The economic impracticalities of sorting and preparing clothing for recycling or resale with

human labour remain a core contributing factor to this status quo. Therefore, this thesis suggests the

development of robotic technologies that could perform laborious steps involved in textile preparation

for recycling. In particular, the act of sorting garments by the type of object, colour or composition could

automate the repetitive components within the manual labour required by recyclers. Chapter 2 presented

a literature review investigating state-of-the-art robotic fabric manipulation. Throughout the literature, a

consistent thinking pattern that describes humans as the most adept manipulators of fabric became ap-

parent. The literature also found that current robot gripper designs for fabric manipulation were limited

in functionality and design. These notions resulted in the research conducted throughout chapters 3, 4

and 5, which used anthropomorphic grasping characteristics to inspire, develop and train a distinctive

robot manipulator targeting fabric manipulation. The design thinking framework was essential in trans-

lating human-inspired aspects into a robotic system, providing a stable workflow in which traditional

engineering principles were applied to design, construct and train the gripper. After presenting the core

research of this thesis, this final chapter now presents a review of research questions, limitations and

195
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future considerations.

6.1.1 Addressing the Research Questions

Babin and Gosselin [Babin 21] presented a review on grasping and specifically discuss the multidisci-

plinary nature of robotic gripper development. On top of involving a series of engineering challenges

surrounding mechanics, software development, electronics and design, one must also consider the in-

tended applications and task scope. Gripper development is still a prominent area of research as no

grasping solution has reached the generalised manipulation capabilities of human beings. A common

approach is to develop specialised manipulators with limited skills for specific applications. Such an ap-

proach can balance the engineering challenges and applicability. This thesis has followed such methods

to develop a gripper for textile pick-and-place sorting. Chapters 3, 4 and 5 each presented a core research

question as listed below. The research involved in formulating, creating and training the gripper was a

result of addressing these questions.

1. Chapter 3: Can discussing previous grippers from a hand-centric, anthropomorphic viewpoint

reveal unique limitations and highlight novel design inspirations?

2. Chapter 4: Can one use robotic development techniques to build and integrate a unique gripper

based structurally around the lateral grasp?

3. Chapter 5: Can reinforcement learning algorithms execute environmentally constrained grasping

by learning from a reward schema inspired by human-centric behaviour?

Fabric manipulation is known to be complex [Sanchez 18]. Nevertheless, everyday humans fold

clothing, fasten buttons, do laundry, place shirts on hangers, and dress themselves. Creating a gener-

alised robotic agent that could perform all of these tasks would be a considerable undertaking beyond the

current state-of-the-art. Many authors have recognised that humans are currently the most adept fabric

manipulators [Koustoumpardis 04,Le 13]. While replicating the capabilities of humans when manipulat-

ing fabric is currently infeasible, many projects have sought aspects of human-inspired manipulation to

incorporate into gripper design [Le 13,Donaire 20,Koustoumpardis 14] or robotic fabric handling strate-

gies [Verleysen 20]. Some authors note that previous robotic gripper designs for fabric handling were

limited in functionality or applicability [Donaire 20, Sanchez 18]. While examining previous grippers

and the skills required for fabric manipulation in Chapter 2, a research gap was discovered in which no
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existing devices were applicable to generalised pick-and-place textile applications. In addition, the lit-

erature highlighted that simply grasping and holding fabric requires dexterous skills, including grasping

strategies that exploit environmental constraints and the capability to modulate the grasp force.

This initial gap inspired the research of Chapter 3, which sought to understand the manipulation and

engineering limitations of previous devices. Given the numerous examples of human-inspired gripper

designs, this research describes a subset of grippers designed for fabric manipulation using custom tax-

onomies based on anthropomorphic hand poses [Feix 15] and dexterous actions [Bullock 12]. While

previous research has examined grippers for fabric handling [Borràs 20], the examination of these de-

vices through an anthropomorphic lens was a new approach which previous research had not considered.

In addition to surveying anthropomorphic comparisons, the technical details and applications of the

surveyed mechanisms were considered. Surveying previous grippers under this anthropomorphic and

technical lens led to several insights and a scope of dexterous capabilities for fabric pick-and-place de-

scribed in Section 3.4.5. A number of further insights surrounding fabric handling beyond pick-and-place

applications were also present, which Section 6.2 discusses.

The takeaways from the survey of previous devices informed the choice of a conceptual gripper

based on the lateral grasp. Before proceeding with the design, construction and development of the

gripper, Chapter 3 validated that the lateral grasp would be sufficient for pick-and-place with a user study

outlined in Section 3.5. This research developed in Chapter 3 comprehensively responded to the first

research question, laying the groundwork for the engineering undertaken in Chapter 4, which translated

the conceptual lateral-grasp design into a realised robotic gripper, thereby addressing the second research

question. The work undertaken in Chapter 4 also led to a publication [Hinwood 20]. The development

of this device involved kinematic, kinostatic and dynamic analyses alongside an iterative prototyping

process. Chapter 4 also evaluates the constructed manipulator’s grasp strength and ability to exploit

environmental constraints while grasping flattened clothing with pre-programmed trajectories.

Chapter 5 addresses the third and final research question. Using environmentally constrained (EC)

grasping to pick up flattened clothing is a contact-rich manipulation task, which previous research per-

formed with compliant mechanical elements [Koustoumpardis 14,Donaire 20]. Such approaches limited

the range of wrist orientations in which this grasping act could occur, and also allowed friction to impact

grasp success. To overcome these shortcomings, off-policy actor-critic reinforcement learning (RL) al-

gorithms were implemented and deployed on a custom environment designed to encourage the gripper

to perform EC grasping motions. The formulated reward signal used observations from a human-centric
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study by Eppner et al. [Eppner 15], which saw how humans naturally exploit the environment when their

vision is limited. Answering these three research questions followed a core tenet established in the liter-

ature, that human beings remain the most capable and diverse manipulators of fabric. By observing their

behaviour and morphology, this thesis formulated, created, and trained a generalised robotic gripper for

pick-and-place sorting of textile waste.

6.1.2 Limitations and Recommendations

Each chapter of research focused on a specific discipline within the broad field of robotics and con-

tained unique limitations requiring diverse solutions. The anthropomorphic survey of Chapter 3, while

effective in discovering the lateral grasp design inspiration, contained some limitations in its scope and

applicability. Eight manipulators from the literature were chosen based on specific criteria that made

them suitable for the anthropomorphic survey, as outlined in Section 3.2. The capabilities and features

of this subset informed the custom taxonomies used, shown in Figures 3.11 and 3.14. This approach

sufficiently outlined the skills required for generalised pick-and-place of fabric. However, exploring fab-

ric manipulation in a broader context would require an expanded anthropomorphic survey investigating

grippers with technical augmentations and commercial grippers while considering more complex manip-

ulation primitives. Such an approach may extend the custom taxonomies built and derive further insights

beyond the conclusions of Chapter 3. The survey of Borràs et al. [Borràs 20] is an example of such a

comprehensive investigation, except they examined fabric manipulation under an object-centric frame-

work. Finally, the human-centric survey conducted in Section 3.5 had a limited number of participants

(17) requiring non-parametric statistical evaluations. By including a wider range of participants in the

research, the conclusions drawn would gain increased robustness.

The modelling, construction and evaluation of Chapter 4 resulted in a unique gripper ready for data-

driven experimentation. However, there were elements throughout this process that could have seen

improvement. For example, the sensing setup on the hand will require refinement. At the gripper’s

present stage of development, a silicon tube with a pressure sensor detects rigid object collisions with the

static plate by detecting changes in pressure when the tube deforms. This component must continuously

detect forces applied to the static plate for a long-term solution. In addition, a different fingertip sensor

may be required. Grasping and holding clothing may require a more biomimetic design that can detect

collisions across the entire surface area of the ‘fingertip’. While the applied sensor contributed to learning

EC grasping in Chapter 5, the limited surface area and certain non-linear behaviours presented hurdles
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that required addressing.

Finally, a slight discrepancy between the applied grasp force and the expected value from modelling

was noted when evaluating the gripper’s grasp strength ability. Despite this observed disparity, the grip-

per still exhibited a grasp strength appropriate for generalised garment handling and further investigation

was not required to pursue the reinforcement learning in Chapter 5. Additionally, to go further with this

gripper, an upgraded design more suited to commercial or long-term endeavours is required, in which

case, further investigation expanding upon the design and modelling may yield further insights.

Lastly, the RL learning undertaken in Chapter 5 used two well-known off-policy actor-critic algo-

rithms. This choice was made as previous robotic prototypes using similar actuators saw improved

sample efficiency while learning collision-rich skills [Ibarz 21, Ahn 20]. The assumption was made that

these algorithms would most effectively apply to the arbitrary grasping learning problem addressed in

Chapter 5. However, given SAC’s failure to converge and the time-intensive training process of TD3,

further exploring the problem of environmentally constrained grasping with on-policy approaches such

as Proximal Policy Optimisation (PPO) may be beneficial. In addition, despite failing to discover a set of

hyperparameters allowing SAC to succeed at the RL of EC grasping with the gripper, further exploration

with hyperparameter tuning or code-level optimisations could lead to SAC successfully learning in the

simulation developed in Chapter 5 or both SAC and TD3 reducing their learning time.

6.2 Future Research Directions

A number of research avenues could build upon the research presented in this thesis. Regarding the

anthropomorphic survey and human-centric study of Chapter 3, broadening the scope of manipulation

beyond pick-and-place could yield a number of further insights for generalised fabric manipulation. In

addition, growing the scope of grippers examined may also lead to valuable insights. One observation

from the anthropomorphic survey saw that grippers considering folding challenges would perform en-

vironmentally constrained grasps that slide a compliant, thin finger appendage underneath a flattened

garment, thereby preserving the garment’s state. By exploring more complex tasks such as hanging up a

shirt, folding garments, or spreading out garments under an anthropomorphic lens, more refined gripper

designs capable of general garment handling could be realised.

Observations from the human-centric study in Chapter 3 reinforced previous notions from the lit-

erature, mainly that the act of folding remains a complex endeavour usually requiring more than two
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fingers. However, this study also saw humans adopt a range of more complex manipulation primitives

while handling clothing, such as draping clothes over their arms and torsos or adopting bimanual manip-

ulation strategies under challenging situations. Investigating these more complex behaviours and when

they occur could also lead to further insights for broader fabric manipulation development.

Refining the grippers design is a prominent aspect to explore in the near future. The ‘fingertip’

sensor on the gripper was the appropriate device to purchase during development due to financial and

timeline obligations under the Ph.D. program. However, for generalised pick-and-place sorting of textile

waste, a sensing configuration that can sense across a wide surface area of the TCP may improve the

learning of EC grasping motions. One approach could involve revisiting the design thinking framework,

emphasising sensing requirements throughout pick-and-place actions involving textiles. Furthermore,

building upon the modelling process undertaken in Chapter 4, while investigating lower-level technical

details could lead to an improved understanding of actuator behaviour and resolve discrepancies seen in

Chapter 4 while investigating the grasp force. In addition to improving the modelling, further research on

the gripper will investigate the in-hand dexterous skills of grasp gaiting, haptic exploration and slippage

reaction.

Finally, expanding the deep reinforcement learning approaches of Chapter 5 could enable robots

to perform various refined dexterous manipulation primitives. Immediate improvements to the present

setup could include expanding the hyperparameters search and attempting to train on-policy algorithms,

as mentioned in Section 6.1.2. In addition to these initial refinements, a goal-conditioned learning for-

mulation using Hindsight Experience Replay (HER, [Andrychowicz 17]) may allow policies to learn EC

grasping motions that can modulate the wrench exerted at the TCP while dragging along the environ-

ment. Improved simulated environments that integrate fabrics or improve the domain randomisation

aspects may also benefit learned policies. Alternatively, a multimodal setup that considers vision in com-

bination with a gripper observation vector could also advantage future learning studies into EC grasping.

6.3 Final Remarks

Autonomous garment handling still requires further investigation in various engineering disciplines. Re-

search focusing on gripper development, motion planning, computer vision, and deep learning will fur-

ther improve robotic fabric manipulation. This thesis took inspiration from humans to build and train

a serial-link manipulator with four actuators. Compared to previous devices, this gripper contains no
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complex elements such as tendon-driven components or compliant joints, while remaining capable of

the required skills of textile pick-and-place sorting. The human-centric perspective was the critical step

to discovering this design and taking further inspiration from human manipulation skills and morphology

could lead to improved approaches in fabric manipulation and broader autonomous interactions with the

world.

From a personal perspective, the multidisciplinary skills learned throughout this Ph.D. program are

valuable assets that will carry through to a broad range of future robotic endeavours. In addition to skills

learned and experience gathered personally, this project has grown from research into a commercial

endeavour. The company RediRobots was formed in 2022 and has received several government grants,

alongside being accepted into an accelerator program to build a commercial version of the research

presented throughout this thesis. As of August 2023, RediRobots is testing their textile sorting robots

with recyclers throughout Australia, and I believe we can significantly impact the textile waste issue the

world is experiencing today. This real-world impact would not have been possible without the research

of this thesis, and I am grateful to my collaborators, supervisors, friends and mentors for their support

throughout this journey.
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XXVI International Conference on Information, Communication and Automation Technolo-

gies (ICAT), pages 1–6. IEEE, 2017.

[Twardon 15] Lukas Twardon and Helge Ritter. Interaction skills for a coat-check robot: Identifying

and handling the boundary components of clothes. In 2015 IEEE International Conference on

Robotics and Automation (ICRA), pages 3682–3688. IEEE, 2015.

[Tyldesley 96] Barbara Tyldesley and June I Grieve. Muscles, nerves, and movement: kinesiology in

daily living. Blackwell Science, 1996.

[Varin 19] Patrick Varin, Lev Grossman, and Scott Kuindersma. A comparison of action spaces for

learning manipulation tasks. In 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 6015–6021. IEEE, 2019.

[Verleysen 20] Andreas Verleysen, Matthijs Biondina, and Francis Wyffels. Video dataset of human

demonstrations of folding clothing for robotic folding. The International Journal of Robotics

Research, 39(9):1031–1036, 2020.

[Von Drigalski 17a] Felix Von Drigalski, Marcus Gall, Sung-Gwi Cho, Ming Ding, Jun Takamatsu,

Tsukasa Ogasawara, and Tamim Asfour. Textile identification using fingertip motion and 3D

force sensors in an open-source gripper. In 2017 IEEE International Conference on Robotics

and Biomimetics (ROBIO), pages 424–429. IEEE, 2017.

[Von Drigalski 17b] Felix Von Drigalski, Daiki Yoshioka, Wataru Yamazaki, Sung-Gwi Cho, Marcus

Gall, Pedro Miguell Uriguen Eljuri, Viktor Hoerig, Ming Ding, Jun Takamatsu, Tsukasa Oga-

sawara, et al. NAIST Openhand M2S: A Versatile Two-Finger Gripper Adapted for Pulling and

Tucking Textile. In 2017 First IEEE International Conference on Robotic Computing (IRC),

pages 117–122. IEEE, 2017.

[Wang 10] Youjiang Wang. Fiber and textile waste utilization. Waste and Biomass Valorization,

1(1):135–143, 2010.

[Wang 20a] Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David Lane, Yvan Petillot,

and Sen Wang. Learning mobile manipulation through deep reinforcement learning. Sensors,

20(3):939, 2020.



222 BIBLIOGRAPHY

[Wang 20b] Yufei Wang and Tianwei Ni. Meta-SAC: Auto-tune the Entropy Temperature of Soft Actor-

Critic via Metagradient. arXiv preprint arXiv:2007.01932, 2020.

[Xiang 21] Xuanchen Xiang and Simon Foo. Recent Advances in Deep Reinforcement Learning Ap-

plications for Solving Partially Observable Markov Decision Processes (POMDP) Problems:

Part 1Fundamentals and Applications in Games, Robotics and Natural Language Processing.

Machine Learning and Knowledge Extraction, 3(3):554–581, 2021.

[Xu 09] Zhe Xu, Travis Deyle, and Charles C Kemp. 1000 Trials: An empirically validated end

effector that robustly grasps objects from the floor. In 2009 IEEE International Conference on

Robotics and Automation, pages 2160–2167. IEEE, 2009.

[Xu 16] Zhe Xu and Emanuel Todorov. Design of a highly biomimetic anthropomorphic robotic hand

towards artificial limb regeneration. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 3485–3492. IEEE, 2016.

[Yamaguchi 19] Akihiko Yamaguchi and Christopher G Atkeson. Recent progress in tactile sensing and

sensors for robotic manipulation: can we turn tactile sensing into vision? Advanced Robotics,

33(14):661–673, 2019.

[Yamakawa 11] Yuji Yamakawa, Akio Namiki, and Masatoshi Ishikawa. Motion planning for dynamic

folding of a cloth with two high-speed robot hands and two high-speed sliders. In 2011 IEEE

International Conference on Robotics and Automation, pages 5486–5491. IEEE, 2011.

[Yamazaki 21] Kimitoshi Yamazaki and Taiki Abe. A Versatile End-Effector for Pick-and-Release of

Fabric Parts. IEEE Robotics and Automation Letters, 6(2):1431–1438, 2021.

[Yang 21] Zhihan Yang and Hai Nguyen. Recurrent off-policy baselines for memory-based continuous

control. arXiv preprint arXiv:2110.12628, 2021.

[Yarats 20] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Reg-

ularizing deep reinforcement learning from pixels. In International Conference on Learning

Representations, 2020.

[Yarats 21] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual

continuous control: Improved data-augmented reinforcement learning. arXiv preprint

arXiv:2107.09645, 2021.



BIBLIOGRAPHY 223

[Yoshikawa 90] Tsuneo Yoshikawa. Foundations of robotics: analysis and control. MIT press, 1990.

[Yoshimi 12] Takashi Yoshimi, Naoyuki Iwata, Makoto Mizukawa, and Yoshinobu Ando. Picking up

operation of thin objects by robot arm with two-fingered parallel soft gripper. In 2012 IEEE

Workshop on Advanced Robotics and its Social Impacts (ARSO), pages 7–12. IEEE, 2012.

[Yuan 18] Wenzhen Yuan, Yuchen Mo, Shaoxiong Wang, and Edward H Adelson. Active clothing ma-

terial perception using tactile sensing and deep learning. In 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4842–4849. IEEE, 2018.

[Yuan 20] Shenli Yuan, Lin Shao, Connor L Yako, Alex Gruebele, and J Kenneth Salisbury. Design

and control of roller grasper v2 for in-hand manipulation. In 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 9151–9158. IEEE, 2020.

[Yuba 17] Hiroyuki Yuba, Solvi Arnold, and Kimitoshi Yamazaki. Unfolding of a rectangular cloth

from unarranged starting shapes by a Dual-Armed robot with a mechanism for managing

recognition error and uncertainty. Advanced Robotics, 31(10):544–556, 2017.

[Zamani 15] Bahareh Zamani, Magdalena Svanström, Gregory Peters, and Tomas Rydberg. A carbon

footprint of textile recycling: A case study in Sweden. Journal of industrial ecology, 19(4):676–

687, 2015.

[Zhu 19] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dex-

terous manipulation with deep reinforcement learning: Efficient, general, and low-cost. In

2019 International Conference on Robotics and Automation (ICRA), pages 3651–3657. IEEE,

2019.

[Zhu 20] Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash

Kumar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning.

arXiv preprint arXiv:2004.12570, 2020.

[Zhu 22] Wangshu Zhu and Andre Rosendo. PSTO: Learning Energy-Efficient Locomotion for

Quadruped Robots. Machines, 10(3):185, 2022.

[Zwart 22] Sjoerd Zwart. Engineering Epistemology: Between Theory and Practice, 2022.



224 BIBLIOGRAPHY



Appendix A

Human Observation Exercise

A.1 Consent Form

This Chapter contains the additional figures and details of the human observation exercise involving

fabric manipulation referenced in Chapter 3. The first information presented in this appendix is the

experiment information and consent form given to participants, shown across the following four pages.
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Participant Information Form 

Project Title 

Humans and Cloth Manipulation: Deriving inspirations for robotic manipulation 

Researcher  

Mr. David Hinwood 

PhD Candidate | Human-Centred Computing Laboratory | University of Canberra, Australia 

Phone: +61 405 687 7772 | E-mail: David.Hinwood@canberra.edu.au 

Supervisory Panel 

Dr. Damith C. Herath 

Associate Professor in Robotics | Human-Centred Computing Laboratory  

Faculty of Education, Science, Technology and Mathematics. | University of Canberra, Australia 

E-mail: Damith.Herath@canberra.edu.au 

Supervisory Panel 

Dr. Roland Goecke 

Associate Professor in Affective Computing | Human-Centred Computing Laboratory  

Faculty of Education, Science, Technology and Mathematics. | University of Canberra, Australia 

E-mail: Roland.Goecke@canberra.edu.au 
 
Project Aim 

The aim of this exercise is to gain an understanding of how humans approach the problem of fabric 
handling.    
 
Benefits of the Project 

The information gained from the research will be used to design robot hands that manipulate fabric and 
gain a deeper understanding of human manipulation tendencies. 
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General Outline of the Project 

The project will contribute towards a PhD thesis and possibly produce an academic publication(s) that 
develop robotic manipulators and techniques to handle fabric. 

Participant Involvement 

Participants who agree to participate in the research will be asked to: 

1. Perform a series of manipulation tasks with a range of garments. 

2. Be observed and recorded while performing the task. 

3. Take part in a short questionnaire after performing the tasks. 

Participation in the research is completely voluntary and participants may, without any penalty, decline 
to take part or withdraw at any time without providing an explanation or refuse to answer a question.  

Confidentiality 

Only the researcher/s will have access to the individual information provided by participants. Privacy 
and confidentiality will be assured at all times. The research outcomes may be presented at conferences 
and written up for publication. However, in all these publications, the privacy and confidentiality of 
individuals will be protected. 

Anonymity 

All reports and publications of the research will contain no information that can identify any individual 
and all information will be kept in the strictest confidence. 

Data Storage 

The information collected will be stored securely on a password protected computer throughout the 
project and then stored at the University of Canberra for the required five year period after which it will 
be destroyed according to university protocols.  

Ethics Committee Clearance 

The project has been approved by the Human Research Ethics Committee of the University of Canberra 
(6982 - Humans and Cloth Manipulation: Deriving inspirations for robotic manipulation).  

Queries and Concerns 

Queries or concerns regarding the research can be directed to the researcher and/or supervisor. Their 
contact details are at the top of this form. You can also contact the University of Canberra’s Research 
Ethics & Integrity Unit at the address humanethicscommittee@canberra.edu.au. 
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If you would like some guidance on the questions you could ask about your participation please refer to 
the Participants’ Guide located at http://www.canberra.edu.au/ucresearch/attachments/pdf/a-
m/Agreeing-to-participate-in-research.pdf  
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Consent Form  

Project Title 

Humans and Cloth Manipulation: Deriving inspirations for robotic manipulation 

Consent Statement 

I have read and understood the information about the research. I am not aware of any condition that 
would prevent my participation, and I agree to participate in this project. I have had the opportunity to 
ask questions about my participation in the research. All questions I have asked have been answered to 
my satisfaction. 

Please indicate whether you agree to participate in each of the following parts of the research (please 
indicate which parts you agree to by putting a cross in the relevant box):   

 Performing a series of fabric manipulation tasks while being visually recorded and observed.  

 Participate in a questionnaire once the manipulation tasks have been complete.  

 

Name……………………………………………………………………….……………………........…  

 

Signature………….........................................................…………………… 
 

Date …………………………………. 

 

A summary of the research report can be forwarded to you when published. If you would like to receive 
a copy of the report, please include your mailing (or email) address below. 

Name…………………………………………………………………………….…………….....………. 
 

Address………………………………………..……………………………………….………………….. 
 

……………………………………………………………………………………………….....……………… 
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A.2 Questionnaire

This section contains the attached questionnaire form that participants completed once completing the

HRI exercises referenced in Chapter of 3. Each participant filled out this form upon completion of the

observation exercise detailed in Section 3.5.

Observed Human Dexterous Manipulation: 
Questionnaire 

1. Basic Details 
a. Age  …………………………. 
b. Gender   Male | Female | Other | Prefer not to say 

2. Did the difficulty of the tasks change over time when compared to the unconstrained 
condition (your first attempt), please circle the appropriate response to each action? 

a. Grasping – Pincer Grasp  Easier | Remained about the same | Harder 
b. Grasping – Lateral Grasp Easier | Remained about the same | Harder 
c. Folding – Pincer Grasp  Easier | Remained about the same | Harder 
d. Folding – Lateral Grasp   Easier | Remained about the same | Harder 
e. Unfolding – Pincer Grasp  Easier | Remained about the same | Harder 
f. Unfolding – Lateral Grasp Easier | Remained about the same | Harder 

 
3. If there was a change in difficulty under the following conditions when compared to the 

unconstrained condition (your first attempt), by what degree, place a mark on the line 
where appropriate? 
 

a. Grasping – Pincer Grasp  
 

 
 

b. Grasping – Lateral Grasp 
 
 
 

c. Folding – Pincer Grasp  
 
 
 

d. Folding – Lateral Grasp 
 

 
 

e. Unfolding – Pincer Grasp 
 
 
 

f.  Unfolding – Lateral Grasp 
 
 

 
4. Were there any restrictions present that made certain actions difficult, if so, please provide 

details? 

 

Significantly Easier Significantly Harder 

Significantly Easier Significantly Harder 

Significantly Easier Significantly Harder 

Significantly Easier Significantly Harder 

Significantly Easier Significantly Harder 

Significantly Easier Significantly Harder 
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A.3 HRI Data and Information

The actual video feed of the human observation exercise is present at the University of Canberra’s

Human-Centred Technology (HCT) lab. Please contact the appropriate faculty member or author for

further details. This component of the appendix details the data collected throughout the observation

exercise described in Section 3.5.

A.3.1 Analysed duration data in human observation exercise

Duration Data

Table A.1: The duration data (in seconds) of participants performing various tasks in the human obser-
vation exercise, highlighted blank yellow cells indicate errors made by a minority of participants.

Table A.2: Averages of the participant’s times while folding a shirt.
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Table A.3: Participant times while sorting clothing.

Table A.4: Participant times while folding and sorting clothing.

Participant questionnaire responses
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Table A.5: The recorded responses of the degree of difficulty participants found the pincer or lateral constraints
compared to the unconstrained. This image is from the Jamovi software.

(a) Grasping (b) Folding (c) Unfolding

Figure A.1: A visualisation from the ANOVA analysis of Jamovi showing the degree of difficulty participants
found pincer and lateral conditions compared to the unconstrained setting while grasping, folding and unfolding.
The y-axis represents the difficulty magnitude responses on the form in Appendix A.2.
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Appendix B

Mathematical Modelling of the Effector

B.0.1 Homogeneous Transformations

The homogeneous transformation matrix is a concise method in linear algebra of mapping displacement

in both position and rotation of coordinate frames commonly used in robotic modelling. When repre-

senting transformations in three-dimensional space, the matrix is a size of 4× 4 which comprehensively

describes the rotation and displacement from an arbitrary frame d to a target frame t. For example, this

transformation can alternatively be present in the form of Equation B.1, where dRt represents the rotation

matrix transformation from frame d to frame t and dpt represents the position displacement vector.

dHt =

dRt dpt

0 1

 (B.1)

The complete form of the Homogeneous transformation matrix is present in Equation B.2, highlight-

ing the rotation matrix R and the position vector p.

H =



R11 R12 R13 px

R21 R22 R23 py

R31 R32 R33 pz

0 0 0 1


(B.2)

The properties of homogeneous transformations include that they can be chained together via matrix

multiplication resulting in a single matrix representing a series of transformations. For example, equation

B.3 displays this operation where from frame w, the transformation matrix to frame t concerning frame

d.
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wHt =w Hd ·d Ht (B.3)

Throughout this thesis, it becomes necessary to express the combination of rotation and translation

components independently, the notation of Tx(a)(Representing a linear transform of distance a along the

x-axis) and Rx(r)(Representing a rotation of r radians around the x-axis) represent transformations in

robotic space. These coordinate transforms are chained together as Tx(a)Rx(r), representing sequential

translation and rotation actions.

B.0.2 Properties of the Rotation Matrix

The basics: While representing rotation in three-dimensional space, the rotation matrix is of a 3 × 3

size as shown previously in Equation B.2. However, the rotation matrix can also exist in the following

form shown in Equation B.4.

R = [x′y′z′ ] =


x

′
x y

′
x z

′
x

x
′
y y

′
y z

′
y

x
′
z y

′
z z

′
z

 (B.4)

where three unit vectors of x′ , y′ , z′ describe the orientation of a frame concerning a reference frame. The

notation in Equation B.4 denotes the direction cosines from frame O′ − x′y′z′ to a base reference frame

O − xyz, expressed in the subscript component. With these definitions, Equations B.5 - B.7 express the

rotation matrix moving a body around the available axis in 3D space.

Rx(γ) =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (B.5)

Ry(β) =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 (B.6)

Rz(α) =


cosα − sinα 0

sinα cosα 0

0 0 1

 (B.7)
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Rotation matrices can also multiply together, resulting in sequential rotations analogous to the de-

scribed sequential transformations described in Section B.0.1.

Deriving the roll, pitch and yaw values: It is sometimes more intuitive to represent the rotation

matrix as a vector representing three sequential rotations rather than the standard 3×3 matrix form. This

representation is particularly applicable when multiple rotation matrices have sequentially multiplied

together. Such a method derives the roll, pitch and yaw values or the Euler angles. In this thesis, part of

the operational inverse kinematics solution depends on deriving the roll, pitch and yaw angles. The first

thing is to consider in what order the roll pitch and yaw values can be derived.

In this instance, the method assumes a rotation order of z, y and x. Suppose one considers that a rota-

tion matrix as a sequence of 3 rotations as matrixR, from Equation B.4, whereR = Rz(φ)Ry(θ)Rx(ψ).

Then, the roll pitch and yaw values are calculable via Equations B.8 - B.10. However, previous au-

thors note limits between rotational ranges of −pi
2

to
pi

2
while using these equations. Further details are

present in textbooks. See [Sciavicco 12].

φ = Atan2 (R 21 , R 11) (B.8)

θ = Atan2
(
−R 31 ,

√
R2

32
+R2

33

)
(B.9)

ψ = Atan2 (R 32 , R 33) (B.10)

Deriving a rotation matrix: As rotation matrices represent a frame’s orientation, this expression’s

derivative represents the angular velocity. The inherent properties of the rotation matrix can infer an

expression representing the derivative. Rotation matrices are orthogonal, resulting in the expression

shown in Equation B.11 where i denotes an arbitrary axis of rotation, I3 being an identity matrix and

θ represents the corresponding displacement. With this property and the chain rule, we can write the

expression of the derivative of this matrix as shown in Equation B.12. The resulting term d
dθRiR

T
i is a

skew-symmetric matrix. Thus, one can express the matrix in a form as shown in Equations B.14 and

B.13.

Ri(θ)Ri(θ)
T = I3 (B.11)
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d
dθ
RiR

T
i +

(
d
dθ
RiR

T
i

)T
= 0 (B.12)

S =
d
dθ
RiR

T
i (B.13)

S + ST = 0 (B.14)

The nature of a skew-symmetric matrix has terms reflected across the diagonal as shown in Equation

B.15. One can also represent the skew-symmetric matrix with the vector shown in Equation B.16.

S (v) =


0 −z y

z 0 −x

−y x 0

 (B.15)

v = [x, y, z] (B.16)

With these definitions, one can succinctly express the derivative of a rotation matrix around the x, y

and z axis with Equations B.17 - B.19, respectively.

d

dθ
Rx = Rx


1

0

0

 (B.17)

d

dθ
Ry = Ry


0

1

0

 (B.18)

d

dθ
Rz = Rz


0

0

1

 (B.19)

Finally, we can then express the total angular velocity of a reference frame when a velocity is applied

on axis i at a speed of θ̇ via the expression shown in Equation B.20.
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ωx

ωy

ωz

 = Riv
T θ̇ (B.20)



Kinematics and Kinostatics calculation via symbolic toolbox
This script calculates the position, velocity and forces relationships of the gripper. Note that this script requires 
the robotics toolbox by Peter Corke to be executed.

The symbolic kinematic variables from the system are first created and implemented.

close all;clear all;
%Symbolic Variables of the kinematic system
syms d_1 a_1 a_2 a_3 q_0 q_1 q_2 q_3 q_dot_0 q_dot_1 ...
    q_dot_2 q_dot_3  Delta_z;
sym_pi = sym(pi);
%Velocity Vector
q_dot = [q_dot_0; q_dot_1; q_dot_2; q_dot_3];

%Position Vector
q = [q_0; q_1; q_2; q_3];

%Base transform of the DH parameters
FK_sequence = trotz(sym_pi/2) * trotx(sym_pi/2) * trotz(sym_pi) ...
    * transl(0,0,q_0) * trotx(sym_pi/2) * trotz(q_1) * ...
    transl(a_1,0,d_1) * trotx(sym_pi/2) * trotz(q_2) * ...
    transl(a_2,0,0) * trotx(0) * trotz(q_3) *...
    transl(a_3,0,0) * trotx(-sym_pi/2) ;

%Base transform including 
Sensor_FK_sequence = FK_sequence * transl([0 0  Delta_z])* troty(sym_pi/4);

This section presents the FK kinematic equations for both the TCP of the DH parameters and the sensor 
position.

%establish the standard FK equations
x_fk = simplify(FK_sequence(1,4))

x_fk = 

y_fk = simplify(FK_sequence(2,4))

y_fk = 

z_fk = simplify(FK_sequence(3,4))

z_fk = 

p_fk = -q_2-q_3

p_fk = 

%Converting the symbolic expressions to functions accepting numerical
%values
%x_fk = q_0 - a_3*(sin(q_1)*sin(q_2)*sin(q_3) - cos(q_2)*
% cos(q_3)*sin(q_1)) + a_1*sin(q_1) + a_2*cos(q_2)*sin(q_1)

1
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syms x_FK_calc(q_0,q_1,q_2,q_3,a_1,a_2,a_3)
x_FK_calc(q_0,q_1,q_2,q_3,a_1,a_2,a_3) = x_fk;

%y_fk = -cos(q_1)*(a_1 + a_3*cos(q_2 + q_3) + a_2*cos(q_2))
syms y_FK_calc(q_1,q_2,q_3,a_1,a_2,a_3)
y_FK_calc(q_1,q_2,q_3,a_1,a_2,a_3) = y_fk;

%z_fk = d_1 + a_3*sin(q_2 + q_3) + a_2*sin(q_2)
syms z_FK_calc(q_2,q_3,d_1,a_2,a_3)
z_FK_calc(q_2,q_3,d_1,a_2,a_3) = z_fk;

%p_fk = -q_2-q_3
syms p_FK_calc(q_2,q_3)
p_FK_calc(q_2,q_3) = p_fk;

The forward kinematic equations below define the position of the sensor from 

the transforms of  applied to the traditional DH parameters.

%establish the sensor modified FK equations
x_s_fk = simplify(Sensor_FK_sequence(1,4))

x_s_fk = 

y_s_fk = simplify(Sensor_FK_sequence(2,4))

y_s_fk = 

z_s_fk = simplify(Sensor_FK_sequence(3,4))

z_s_fk = 

p_s_fk = -q_2-q_3 + sym_pi/4

p_s_fk = 

%Converting the symbolic expressions to functions accepting numerical
%values
%x_s_fk = q_0 - a_3*(sin(q_1)*sin(q_2)*sin(q_3) - cos(q_2)
% *cos(q_3)*sin(q_1)) 
% -  Delta_z*(cos(q_2)*sin(q_1)*sin(q_3) + cos(q_3)*sin(q_1)*sin(q_2)) +
% a_1*sin(q_1) + a_2*cos(q_2)*sin(q_1)
syms x_s_fk_calc(q_0,q_1,q_2,q_3,a_1,a_2,a_3, Delta_z);
x_s_fk_calc(q_0,q_1,q_2,q_3,a_1,a_2,a_3, Delta_z) = x_s_fk;

%y_s_fk = -cos(q_1)*(a_1 + a_3*cos(q_2 + q_3) -  
% Delta_z*sin(q_2 + q_3) + a_2*cos(q_2))

2
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syms y_s_fk_calc(q_1,q_2,q_3,a_1,a_2,a_3, Delta_z);
y_s_fk_calc(q_1,q_2,q_3,a_1,a_2,a_3, Delta_z) = y_s_fk;

%z_s_fk = d_1 +  Delta_z*cos(q_2 + q_3) + a_3*sin(q_2 + q_3) 
% + a_2*sin(q_2)
syms z_s_fk_calc(q_2,q_3,d_1,a_2,a_3, Delta_z);
z_s_fk_calc(q_2,q_3,d_1,a_2,a_3, Delta_z) = z_s_fk;

%p_s_fk = pi/4 - q_3 - q_2
syms p_s_fk_calc(q_2,q_3,pi);
p_s_fk_calc(q_2,q_3,pi) = p_s_fk;

%The inverse series of calculations
syms X Y Z P

q0_ik = X - sin(q_1)*(a_1 + a_3*cos(q_2 + q_3)+a_2*cos(q_2))

q0_ik = 

q1_ik = sym_pi - acos(Y/(a_1 + a_3*cos(q_2 + q_3)+a_2*cos(q_2)))

q1_ik = 

q2_ik = asin((Z-d_1+a_3*sin(P))/a_2)

q2_ik = 

q3_ik = -P -q_2

q3_ik = 

syms q0_ik_calc(q_1,q_2,q_3,a_1,a_2,a_3,X);
q0_ik_calc(q_1,q_2,q_3,a_1,a_2,a_3,X) = q0_ik;

syms q1_ik_calc(q_2,q_3,a_1,a_2,a_3,Y,sym_pi);
q1_ik_calc(q_2,q_3,a_1,a_2,a_3,Y,sym_pi) = q1_ik;

syms q2_ik_calc(d_1,a_2,a_3,Z,P);
q2_ik_calc(d_1,a_2,a_3,Z,P) = q2_ik;

syms q3_ik_calc(q_2,P);
q3_ik_calc(q_2,P) = q3_ik;

3
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This section of code parses through data from various joint positions to validate that 

the forward and inverse kinematic algorithms are correct across the manipulator workspace,

may be modified to display data outputs.

%if requiring comparisons to print, enable
debug_flag = false;
%build the joint limits
%establish the joint limits from the DH parameters
nS = 4;
pi_doub = 3.14159265;

q_0_joint_poses = linspace(0,0.079,nS);

q_1_joint_poses = linspace(0.8727,2.2689,nS);
q_1_joint_poses(nS+1) = 0;

q_2_joint_poses = linspace(0,pi_doub/2,nS);

q_3_joint_poses = linspace(-1.7453,0.0175,nS);
q_3_joint_poses(nS+1) = 0;
q_3_joint_poses(nS+2) = -pi_doub/2;

a1 = 19.958/1000;
a2 = 35.752/1000;
a3 = 44.491/1000;
d1 = 18.582/1000;
Delta_z = -13.363/1000;
q3_alt_offset = atan(Delta_z/a3);
a3_alt = sqrt(Delta_z^2 + a3^2);

rounder_estimator = 3;

for qI0 = 1 : length(q_0_joint_poses)
    for qI1 = 1 : length(q_1_joint_poses)
        for qI2 = 1 : length(q_2_joint_poses)
            
        for qI3 = 1 : length(q_3_joint_poses)

            q0 = q_0_joint_poses(qI0);
            q1 = q_1_joint_poses(qI1);
            q2 = q_2_joint_poses(qI2);
            q3 = q_3_joint_poses(qI3);

            bFK_x = double(x_FK_calc(q0,q1,q2,q3,a1,a2,a3));
            bFK_y = double(y_FK_calc(q1,q2,q3,a1,a2,a3));
            bFK_z = double(z_FK_calc(q2,q3,d1,a2,a3));
            bFK_p = double(p_FK_calc(q2,q3));

4
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            sFK_x = double(x_s_fk_calc(q0,q1,q2,q3,a1,a2,a3,Delta_z));
            sFK_y = double(y_s_fk_calc(q1,q2,q3,a1,a2,a3,Delta_z));
            sFK_z = double(z_s_fk_calc(q2,q3,d1,a2,a3,Delta_z));
            sFK_p = double(p_s_fk_calc(q2,q3,pi_doub));

            s_bFK_x = double(x_FK_calc(q0,q1,q2,q3+q3_alt_offset,a1,a2,a3_alt));
            s_bFK_y = double(y_FK_calc(q1,q2,q3+q3_alt_offset,a1,a2,a3_alt));
            s_bFK_z = double(z_FK_calc(q2,q3+q3_alt_offset,d1,a2,a3_alt));
            %The offset only is used in position calculations
            s_bFK_p = double(p_FK_calc(q2,q3))+(pi_doub/4);

            compSens = [sFK_x,sFK_y,sFK_z,sFK_p];
            compFK_solution = [s_bFK_x,s_bFK_y,s_bFK_z,s_bFK_p];

            comparison = ...
                all(round(abs(compSens-compFK_solution),rounder_estimator)...
                < 1e4*eps(min(abs(compSens),abs(compFK_solution))));
            
            if debug_flag
                disp('Calc comparison')
                disp(compSens)
                disp(compFK_solution)
            end
            %if not equal, break
            if ~(logical(comparison))
                disp(compSens);
                disp(compFK_solution);
                causeException = MException('MATLAB:valueError',...
                    'The kinematic equations do not match.');
                throw(causeException);
            end
            

            ik_result_q2 = double(q2_ik_calc(d1,a2,a3,bFK_z,bFK_p));
            ik_result_q3 = double(q3_ik_calc(ik_result_q2,bFK_p));
            ik_result_q1 = double(q1_ik_calc(ik_result_q2,ik_result_q3,...
                a1,a2,a3,bFK_y,sym_pi));
            ik_result_q0 = double(q0_ik_calc(ik_result_q1,ik_result_q2,...
                ik_result_q3,a1,a2,a3,bFK_x));
            
            basicResultIK = [ik_result_q0,ik_result_q1,ik_result_q2,ik_result_q3];
            originalJointPos = [q0,q1,q2,q3];

            comparisonIK = ...
                all(round(abs(basicResultIK-originalJointPos),rounder_estimator) ...
                < 1e4*eps(min(abs(basicResultIK),abs(originalJointPos))));
            if debug_flag
                disp('Calc comparison')
                disp(basicResultIK)

5
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                disp(originalJointPos)
            end
            %if not equal or close, break
            if ~(logical(comparisonIK))
                disp(basicResultIK);
                disp(originalJointPos);
                causeException = MException('MATLAB:valueError',...
                    'The kinematic equations do not match.');
                throw(causeException);
            end

            %equations need to include the q3 offset
            ikSens_result_q2 = ...
                double(q2_ik_calc(d1,a2,a3_alt,s_bFK_z,...
                s_bFK_p-(pi_doub/4)-q3_alt_offset));
            ikSens_result_q3 = ...
                double(q3_ik_calc(ikSens_result_q2,s_bFK_p-(pi_doub/4)));
            ikSens_result_q1 = ...
                double(q1_ik_calc(ikSens_result_q2,...
                ikSens_result_q3+q3_alt_offset,...
                a1,a2,a3_alt,s_bFK_y,sym_pi));
            ikSens_result_q0 = ...
                double(q0_ik_calc(ikSens_result_q1,ikSens_result_q2,...
                ikSens_result_q3+q3_alt_offset,a1,a2,a3_alt,s_bFK_x));

            basicSensResultIK = ...
                [ikSens_result_q0,ikSens_result_q1,ikSens_result_q2,...
                ikSens_result_q3];
            originalJointPos = [q0,q1,q2,q3];

            comparisonSIK = ...
                all(round(abs(basicSensResultIK-originalJointPos),rounder_estimator) ...
                < 1e4*eps(min(abs(basicSensResultIK),abs(originalJointPos))));
            %if not equal, break
            if debug_flag
                disp('Calc comparison')
                disp(basicSensResultIK)
                disp(originalJointPos)
            end
            if ~(logical(comparisonIK))
                disp(basicResultIK);
                disp(originalJointPos);
                causeException = MException('MATLAB:valueError',...
                    'The sensing kinematic equations do not match.');
                throw(causeException);
            end

        end
        end
    end
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end
disp('calculations correct');

calculations correct

The next section of code uses the forward kinematic equations to model the jacobian matrix for both velocity 
and force calculations throughout the system.

%establish the jacobian
dhJacobian =  [diff(x_fk,q_0),diff(x_fk,q_1),diff(x_fk,q_2),diff(x_fk,q_3);
               diff(y_fk,q_0),diff(y_fk,q_1),diff(y_fk,q_2),diff(y_fk,q_3);
               diff(z_fk,q_0),diff(z_fk,q_1),diff(z_fk,q_2),diff(z_fk,q_3);
               diff(p_fk,q_0),diff(p_fk,q_1),diff(p_fk,q_2),diff(p_fk,q_3)];

inverseDHJacobian = inv(dhJacobian);
transposeDHJacobian = transpose(dhJacobian);
determinant = simplify(det(dhJacobian))

determinant = 

This section establishes the Jacobian matrix for the sensor, also known as .

%establish the sensor jacobian
sensorJacobian =  [diff(x_s_fk,q_0),diff(x_s_fk,q_1),diff(x_s_fk,q_2),diff(x_s_fk,q_3);
                   diff(y_s_fk,q_0),diff(y_s_fk,q_1),diff(y_s_fk,q_2),diff(y_s_fk,q_3);
                   diff(z_s_fk,q_0),diff(z_s_fk,q_1),diff(z_s_fk,q_2),diff(z_s_fk,q_3);
                   diff(p_s_fk,q_0),diff(p_s_fk,q_1),diff(p_s_fk,q_2),diff(p_s_fk,q_3)];

inversesensorJacobian = inv(sensorJacobian);
transposesensorJacobian = transpose(sensorJacobian);
determinant_sensor = simplify(det(sensorJacobian))

determinant_sensor = 

Create a latex version of the jacobian formatted for thesis.

%format a latex jacobian for thesis document
dhJacobianLatex = latex(simplify(dhJacobian));
dhJacobianLatex = strrep(dhJacobianLatex,'\cos','c');
dhJacobianLatex = strrep(dhJacobianLatex,'q_{2}+q_{3}','q_{2+3}');
dhJacobianLatex = strrep(dhJacobianLatex,'\sin','s');

7
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Langrangian formulation and validation of novel gripper
This script calculates the symbolic lagrangian, creates a model from the robotic toolbox and validates that the 
the calculations are correct. The coriolis matrix, joint-space inertia matrix and gravity term variables are also 
calculated. Note that this script requires the robotics toolbox by Peter Corke to be executed.

The symbolic kinematic variables from the system are first created.

close all;clear all;
%Symbolic Variables of Our kinematic system
syms d_1 a_1 a_2 a_3 q_0 q_1 q_2 q_3 q_dot_0 q_dot_1 ...
    q_dot_2 q_dot_3;
sym_pi = sym(pi);
%Velocity Vector
q_dot = [q_dot_0; q_dot_1; q_dot_2; q_dot_3];

%Position Vector
q = [q_0; q_1; q_2; q_3];

%The gravity Vector
syms g_x g_y g_z;
g = [g_x;g_y;g_z];

%Base transform of the DH parameters
BaseTransform = trotz(sym_pi/2) * trotx(sym_pi/2);
%dictates the position of link 0 from the point of actuation as 
% it remains a prismatic actuator
T_0j = BaseTransform * trotz(sym_pi) * transl(0,0,q_0);
R_0j = T_0j(1:3,1:3);

%Rotation Transforms to each link before each rotation action
%Row 0 of the DH parameters
T_1 = BaseTransform * trotz(sym_pi) * transl(0,0,q_0) * ...
    trotx(sym_pi/2) ;
R_1 = T_1(1:3,1:3);
%dictates the orientation of link 1 from the point of actuation
T_1j = T_1 * trotz(q_1);
R_1j = T_1j(1:3,1:3);

%Row 1 of the DH parameters
T_2 = T_1 * trotz(q_1) * transl(a_1,0,d_1) * trotx(sym_pi/2);
R_2 = T_2(1:3,1:3);
%dictates the orientation of link 2 from the point of actuation
T_2j = T_2 * trotz(q_2);
R_2j = T_2j(1:3,1:3);

%Row 2 of the DH parameters
T_3 = T_2 * trotz(q_2) * transl(a_2,0,0) * trotx(0) ;
R_3 = T_3(1:3,1:3);
%dictates the orientation of link 3 from the point of actuation
T_3j = T_3 * trotz(q_3);
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R_3j = T_3j(1:3,1:3);

%Row 3 of the DH parameters, R indicates the rotation matrix 
% only component
T_E = T_3 * trotz(q_3) * transl(a_3,0,0) * trotx(-sym_pi/2) ;
R_E = T_E(1:3,1:3);

The lagrangian function can be surmised as the potential energy of a system subtracted from the kinetic energy, 
i.e. L = T - U.

It can also take the form below where  represents the force/torque needed from joint i for a desired position of 

a joint (q), velocity ( ) and acceleration ( ). This problem can also be expressed as , also known as 
the inverse dynamics problem.

However, this alternative form will become more applicable as described by the textbook "Foundations of 
Robotics, analysis and control by Yoshikawa".

The dynamics modelling method starts by estimating the kinetic energy of each link.

The CoM (Centre of Mass) and mass of the links variables are now created. Each CoM variable is defined 
as the expression of the relative transform from the row of the denavit hartenberg parameters. That is, the 
transform for link i will be defined as the transform from the end of ith row of the DH parameters.

%Symbolic variables for unit masses of each link
syms m_l0 m_l1 m_l2 m_l3;

%We next dictate the COM equations, for prismatic links, we 
% take the descriptor from the point of the next axis
syms p_l0x p_l0y p_l0z;
Vecp_l0 = [p_l0x; p_l0y; p_l0z];

%For rotational links, the descriptor is taken from 
% the rotation point of axis
%COM link 1    
syms p_l1x p_l1y p_l1z;
Vecp_l1 = [p_l1x; p_l1y; p_l1z];
%COM link 2    
syms p_l2x p_l2y p_l2z;
Vecp_l2 = [p_l2x; p_l2y; p_l2z];
%COM link 3    
syms p_l3x p_l3y p_l3z;
Vecp_l3 = [p_l3x; p_l3y; p_l3z];

%Per the convention of the robotics toolbox, each COM is 
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% determined from the transform of that particular row 
% of the parameters COM link 0, These variables here represent the COM of
% each link relative to the base frame or 'W'
p_l0_model = Vecp_l0;
p_l0 = T_1 * transl(p_l0_model);
%COM link 1  
p_l1_model = Vecp_l1;
p_l1 = T_2 * transl(p_l1_model);
%COM link 2    
p_l2_model = Vecp_l2;
p_l2 = T_3 * transl(p_l2_model);
%COM link 3    
p_l3_model = Vecp_l3;
p_l3 = T_E * transl(p_l3_model);

Finding the kinetic energy of a link.
The kinetic enegy of a link can be found via two contributions, a translation and rotation component. These 
components are calculated separately below.

Translational Link Energy Calculation

The translational component  represents the translational component of the effector with being the mass of 

the effector, and being the linear velocity of the center of mass.

Where is simply the mass of the link,  is the derivative value of the equation that represents the COM 
position as a vector we first start by denoting  as the postion vector of the COM for link i.

Each element of  represents the COM position in the x, y and z axis with respect to the base coordinate frame 
'W'. This section builds a jacobian for each COM link and multiplies it by the speed of the actuators resulting in 
the linear velocity for each center of mass.

This results in the linear velocity vector shown for each link;
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%The jacobian multipled by the velocity vector to output the 
% linear, COM position as a function of the whole system is 
% also defined before each jacobian object velocities
[p_l0Rx, p_l0Ry, p_l0Rz] = transl(p_l0);
p_dot_l0 = [   diff(p_l0Rx,q_0),0,0,0;
                diff(p_l0Ry,q_0),0,0,0;
                diff(p_l0Rz,q_0),0,0,0]*q_dot;
            
[p_l1Rx, p_l1Ry, p_l1Rz] = transl(p_l1);
p_dot_l1 = [diff(p_l1Rx,q_0),diff(p_l1Rx,q_1),0,0;
             diff(p_l1Ry,q_0),diff(p_l1Ry,q_1),0,0;
             diff(p_l1Rz,q_0),diff(p_l1Rz,q_1),0,0]*q_dot;
         
[p_l2Rx, p_l2Ry, p_l2Rz] = transl(p_l2);
p_dot_l2 = [diff(p_l2Rx,q_0),diff(p_l2Rx,q_1),diff(p_l2Rx,q_2),0;
             diff(p_l2Ry,q_0),diff(p_l2Ry,q_1),diff(p_l2Ry,q_2),0;
             diff(p_l2Rz,q_0),diff(p_l2Rz,q_1),diff(p_l2Rz,q_2),...
             0]*q_dot;
        
[p_l3Rx, p_l3Ry, p_l3Rz] = transl(p_l3);
p_dot_l3 = [diff(p_l3Rx,q_0),diff(p_l3Rx,q_1),...
    diff(p_l3Rx,q_2),diff(p_l3Rx,q_3);
             diff(p_l3Ry,q_0),diff(p_l3Ry,q_1),...
             diff(p_l3Ry,q_2),diff(p_l3Ry,q_3);
             diff(p_l3Rz,q_0),diff(p_l3Rz,q_1),...
             diff(p_l3Rz,q_2),diff(p_l3Rz,q_3)]...
            *q_dot;
        
T_l0L = 1/2 * m_l0 * transpose(p_dot_l0)*p_dot_l0;
T_l1L = 1/2 * m_l1 * transpose(p_dot_l1)*p_dot_l1;
T_l2L = 1/2 * m_l2 * transpose(p_dot_l2)*p_dot_l2;
T_l3L = 1/2 * m_l3 * transpose(p_dot_l3)*p_dot_l3;

kineticTranslationalEnergy = T_l0L + T_l1L + T_l2L + T_l3L;

Rotation Link Energy Calculation

 represents the rotational component with the expression below. 
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For each link,  represents the angular velocity and  represents the inertia tensor about the COM. The inertia 
tensor is estimated through CAD software.

The inertia tensorItakes the form of a 3x3 matrix as shown below;

To estimate the angular velocity of a link , we simply utilised a the rotational jacobian calculation from a 
geometric matrix. This is achieved by taking the derivative about the z axis of the rotation before the actuation. 
Thus the final rotational calculation is shown in the code segment below.

%Symbolic variables for unit inertia tensors about each link, 
% as we do not dictate the torque of the stepper m, such a 
% request becomes an unnessasry descriptor
syms I_l1xx I_l1yy I_l1zz I_l1xy I_l1yz I_l1xz;
syms I_l2xx I_l2yy I_l2zz I_l2xy I_l2yz I_l2xz;
syms I_l3xx I_l3yy I_l3zz I_l3xy I_l3yz I_l3xz;

%As I_l0 relates to a prismatic joint, the inertia tensor is 
% given values of zero since no rotational motion takes place
I_l0 = [0,0,0;0,0,0;0,0,0];
I_l1 = [I_l1xx,I_l1xy,I_l1xz;I_l1xy,I_l1yy,I_l1yz;...
    I_l1xz,I_l1yz,I_l1zz];
I_l2 = [I_l2xx,I_l2xy,I_l2xz;I_l2xy,I_l2yy,I_l2yz;...
    I_l2xz,I_l2yz,I_l2zz];
I_l3 = [I_l3xx,I_l3xy,I_l3xz;I_l3xy,I_l3yy,I_l3yz;...
    I_l3xz,I_l3yz,I_l3zz];

%The rotational component of our systems geometric jacobian, 
% this takes the derivative of rotation matrix components
% from the DH parameters
JacobianRotation = [[0;0;0],R_1*[0;0;1],R_2*[0;0;1],R_3*[0;0;1]];

omega_0 = [JacobianRotation(:,1),[0;0;0],[0;0;0],[0;0;0]]*...
    q_dot;
omega_1 = [JacobianRotation(:,1:2),[0;0;0],[0;0;0]]*...
    q_dot;
omega_2 = [JacobianRotation(:,1:3),[0;0;0]]*...
    q_dot;
omega_3 = JacobianRotation(:,1:4)*...
    q_dot;

T_l0R = 1/2 * transpose(omega_0)*R_1*I_l0*transpose(R_1)*omega_0;
T_l1R = 1/2 * transpose(omega_1)*R_2*I_l1*transpose(R_2)*omega_1;
T_l2R = 1/2 * transpose(omega_2)*R_3*I_l2*transpose(R_3)*omega_2;
T_l3R = 1/2 * transpose(omega_3)*R_E*I_l3*transpose(R_E)*omega_3;
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kineticRotationalEnergy = T_l0R + T_l1R + T_l2R + T_l3R;

As can be observed we have summed up both the translational and rotational components of our lagrangian, 
thus our final expression for kinetic energy can be expressed as the expression below.

The potential energy is a simpler aspect to estimate, by taking the mass, gravity vector, and position of the COM 
for each link, our calculation then becomes the expression below;

U_l0 = -m_l0*transpose(g)*transl(p_l0);
U_l1 = -m_l1*transpose(g)*transl(p_l1);
U_l2 = -m_l2*transpose(g)*transl(p_l2);
U_l3 = -m_l3*transpose(g)*transl(p_l3);

potentialEnergy = U_l0+U_l1+U_l2+U_l3;

%Final Lagrangian Expression
TotalKineticEnergy = kineticTranslationalEnergy + ...
    kineticRotationalEnergy;

Lagrangian = TotalKineticEnergy - potentialEnergy;

The final expression then becomes .

The next step as outlined below performs the differentian steps required to estimate the torque of each actuator. 
This first involves partially deriving our lagrangian by each actuator's velocity followed by a derivation of time. 
The potential energy is also derived by the position of the relevant actuator.

%These are the partial differentiation by m positions
m0SubtractionComponent = diff(Lagrangian,q_0);
m1SubtractionComponent = diff(Lagrangian,q_1);
m2SubtractionComponent = diff(Lagrangian,q_2);
m3SubtractionComponent = diff(Lagrangian,q_3);

%These are the partial differentiation by m speed, 
% the time derivative
%needs to be taken from these components
syms m0_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,q_dot_2,q_dot_3);
syms m1_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,q_dot_2,q_dot_3);
syms m2_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,q_dot_2,q_dot_3);
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syms m3_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,q_dot_2,q_dot_3);

m0_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,...
    q_dot_2,q_dot_3) = diff(Lagrangian,q_dot_0);
m1_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,...
    q_dot_2,q_dot_3) = diff(Lagrangian,q_dot_1);
m2_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,...
    q_dot_2,q_dot_3) = diff(Lagrangian,q_dot_2);
m3_L_diff(q_0,q_1,q_2,q_3,q_dot_0,q_dot_1,...
    q_dot_2,q_dot_3) = diff(Lagrangian,q_dot_3);

syms t q_dot_0(t) q_0(t) q_dot_1(t) q_1(t) q_dot_2(t) q_2(t);
syms q_dot_3(t) q_3(t);
%take the time derivatives
timeDer0eq = m0_L_diff(q_0(t),q_1(t),q_2(t),q_3(t),...
    q_dot_0(t),q_dot_1(t),q_dot_2(t),q_dot_3(t));
timeDer1eq = m1_L_diff(q_0(t),q_1(t),q_2(t),q_3(t),...
    q_dot_0(t),q_dot_1(t),q_dot_2(t),q_dot_3(t));
timeDer2eq = m2_L_diff(q_0(t),q_1(t),q_2(t),q_3(t),...
    q_dot_0(t),q_dot_1(t),q_dot_2(t),q_dot_3(t));
timeDer3eq = m3_L_diff(q_0(t),q_1(t),q_2(t),q_3(t),...
    q_dot_0(t),q_dot_1(t),q_dot_2(t),q_dot_3(t));
timeDer0 = diff(timeDer0eq,t);
timeDer1 = diff(timeDer1eq,t);
timeDer2 = diff(timeDer2eq,t);
timeDer3 = diff(timeDer3eq,t);
out_tau0 = simplify(timeDer0 - m0SubtractionComponent);
out_tau1 = simplify(timeDer1 - m1SubtractionComponent);
out_tau2 = simplify(timeDer2 - m2SubtractionComponent);
out_tau3 = simplify(timeDer3 - m3SubtractionComponent);
syms q0 q1 q2 q3 qd0 qd1 qd2 qd3 qdd0 qdd1 qdd2 qdd3;
%Declare some variables that represent the time functions for
%replacement in the symbolic equation
qdd0_af = diff(q_dot_0(t), t);
qdd1_af = diff(q_dot_1(t), t);
qdd2_af = diff(q_dot_2(t), t);
qdd3_af = diff(q_dot_3(t), t);

qd0_af = diff(q_0(t), t);
qd1_af = diff(q_1(t), t);
qd2_af = diff(q_2(t), t);
qd3_af = diff(q_3(t), t);

qd0_af2 = q_dot_0(t);
qd1_af2 = q_dot_1(t);
qd2_af2 = q_dot_2(t);
qd3_af2 = q_dot_3(t);

q0_af = q_0(t);
q1_af = q_1(t);

7

253



q2_af = q_2(t);
q3_af = q_3(t);

syms q_0 q_1 q_2 q_3
%remove the time based variables and replace with variables
%for position, velocity and acceleration
srcVariables = {qdd0_af qdd1_af qdd2_af qdd3_af...
    qd0_af qd1_af qd2_af qd3_af...
                qd0_af2 qd1_af2 qd2_af2...
                qd3_af2 q_dot_0 q_dot_1 q_dot_2 q_dot_3...
                q0_af q1_af q2_af q3_af q_0 q_1 q_2 q_3};
replaceList = {qdd0 qdd1 qdd2 qdd3 qd0 qd1 qd2 qd3...
    qd0 qd1 qd2 qd3 qd0 qd1 qd2 qd3 q0 q1 q2 q3 q0 q1 q2 q3};

The previous segments of code performed several functions including performing different differential operations 
among others.

tau0 = subs(out_tau0, srcVariables, replaceList);
tau1 = subs(out_tau1, srcVariables, replaceList);
tau2 = subs(out_tau2, srcVariables, replaceList);
tau3 = subs(out_tau3, srcVariables, replaceList);
tau_expressions = [tau0,tau1,tau2,tau3];

Now we create the robotic toolbox SerialLink object and validate the lagrangian matches the toolbox. We input 
the same dynamic parameters that estimate each component.

prisMn = 0;
prisMx = 0.12;
links(1).jType = 'prismatic';
links(1).THETA = sym_pi;
links(1).DISTANCE = 0;
links(1).A_DISTANCE = 0;
links(1).ALPHA = sym_pi/2;
links(1).QLIM = [prisMn,prisMx];
links(1).MASS = m_l0;
links(1).COM = p_l0_model;
links(1).INERTIATENSOR = I_l0;
bioGrp(1) = Link(links(1).jType, 'theta', links(1).THETA, 'a',...
    links(1).A_DISTANCE, 'alpha', links(1).ALPHA,...
    'qlim',links(1).QLIM,'m',links(1).MASS,...
    'r',links(1).COM,'I',links(1).INERTIATENSOR,'standard');

links(2).jType = 'revolute';
links(2).THETA = 0;
links(2).DISTANCE = d_1;
links(2).A_DISTANCE = a_1;
links(2).ALPHA = sym_pi/2;
links(2).QLIM = [0.872665,2.26893];
links(2).MASS = m_l1;
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links(2).COM = p_l1_model;
links(2).INERTIATENSOR = I_l1;
bioGrp(2) = Link(links(2).jType, 'd', links(2).DISTANCE, 'a',...
    links(2).A_DISTANCE, 'alpha', links(2).ALPHA,...
    'qlim',links(2).QLIM,'m',links(2).MASS,...
    'r',links(2).COM,'I',links(2).INERTIATENSOR,'standard');

links(3).jType = 'revolute';
links(3).THETA = 0;
links(3).DISTANCE = 0;
links(3).A_DISTANCE = a_2;
links(3).ALPHA = 0;
links(3).QLIM = [0,sym_pi/2];
links(3).MASS = m_l2;
links(3).COM = p_l2_model;
links(3).INERTIATENSOR = I_l2;

bioGrp(3) = Link(links(3).jType, 'd', links(3).DISTANCE, 'a',...
    links(3).A_DISTANCE, 'alpha', links(3).ALPHA,...
    'qlim',links(3).QLIM,'m',links(3).MASS,...
'r',links(3).COM,'I',links(3).INERTIATENSOR,'standard');

links(4).jType = 'revolute';
links(4).THETA = 0;
links(4).DISTANCE = 0;
links(4).A_DISTANCE = a_3;
links(4).ALPHA = -sym_pi/2;
links(4).QLIM = [-1.74533,0.017453];
links(4).MASS = m_l3;
links(4).COM = p_l3_model;
links(4).INERTIATENSOR = I_l3;

bioGrp(4) = Link(links(4).jType, 'd', links(4).DISTANCE, 'a',...
    links(4).A_DISTANCE, 'alpha', links(4).ALPHA,...
    'qlim',links(4).QLIM,'m',links(4).MASS,'r',...
    links(4).COM,'I',links(4).INERTIATENSOR,'standard');

%This creates our mechanical system in the robotics toolbox, 
% bearing in mind the gravity vector is inverted due to 
% the toolbox's design and input
%parameters
gripper = SerialLink(bioGrp,'name','BM_endeffector','base',...
    trotz(sym_pi/2)*trotx(sym_pi/2),'gravity',-g)

 
gripper = 
 
BM_endeffector:: 4 axis, PRRR, stdDH, slowRNE, Symbolic          
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         pi|         q1|          0|       pi/2|          0|
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|  2|         q2|        d_1|        a_1|       pi/2|          0|
|  3|         q3|          0|        a_2|          0|          0|
|  4|         q4|          0|        a_3|      -pi/2|          0|
+---+-----------+-----------+-----------+-----------+-----------+
base:    t = (0, 0, 0), RPY/xyz = (0, 90, 90) deg                
 

%Get the m torques from the toolboxes recursive 
% Newton Euler algorithm
rne = gripper.rne([q0 q1 q2 q3],[qd0 qd1 qd2 qd3],...
    [qdd0 qdd1 qdd2 qdd3]);

Validate our equation is equivilant to the rne toolbox calculation as done below;

isequal(tau0,rne(1))

ans = logical
   1

isequal(tau1,rne(2))

ans = logical
   1

isequal(simplify(tau2),simplify(rne(3)))

ans = logical
   1

isequal(tau3,rne(4))

ans = logical
   1

Next, we create the coriolis, inertia and gravity terms to compare these results to our lagrangian and validate all 
torque estimation methods are equivilant.

These matrices can applied in the following expression to estimate the forces and torques in which Q 
represents the torque/force vector, remembering that this representation omits the friction term.

%Generate the inertia matrix with the toolbox
inertiaMatrix = gripper.inertia([q0 q1 q2 q3]);
%Generate the coriolis matrix with the toolbox
coriolisMatrix = gripper.coriolis([q0 q1 q2 q3],[qd0 qd1 qd2 qd3]);
%Generate the gravity term component with the toolbox
gravload = gripper.gravload([q0 q1 q2 q3]);

%Simplify the equations from our lagrangian expressions
Q1 = simplify(tau0);
Q2 = simplify(tau1);
Q3 = simplify(factor(tau2));
Q4 = simplify(factor(tau3));
%Create the lagrangian Q vector
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Q = [Q1;Q2;Q3(1)*Q3(2);Q4(1)*Q4(2)];

%From the inertia and coriolis matrices with the gravity term,
% create a consise descriptor of the lagrangian
Q_evaluation = inertiaMatrix*[qdd0;qdd1;qdd2;qdd3] + ...
    coriolisMatrix*[qd0;qd1;qd2;qd3] + transpose(gravload);

Q_e1 = simplify(Q_evaluation(1));
Q_e2 = simplify(Q_evaluation(2));
Q_e3 = simplify(factor(Q_evaluation(3)));
Q_e4 = simplify(factor(Q_evaluation(4)));
Q_eval = [Q_e1;Q_e2;Q_e3(1)*Q_e3(2);Q_e4(1)*Q_e4(2)];

Finally, lets validate that our equations are equivilant with the following evaluations below;

isequal(Q(1),Q_eval(1))

ans = logical
   1

isequal(Q(2),Q_eval(2))

ans = logical
   1

isequal(Q(3),Q_eval(3))

ans = logical
   1

isequal(Q(4),Q_eval(4))

ans = logical
   1

Finally, our data can be saved to a matlab mat file holding the symbolic data, done below, we also save our 
equations to a latex format;

latex_tau0 = latex(Q1);
latex_tau1 = latex(Q2);
latex_tau2 = latex(simplify(Q3(1)*Q3(2)));
latex_tau3 = latex(simplify(Q4(1)*Q4(2)));
save('symbolicData');
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B.0.5 Simplified Tau Expressions

This section details the final equations from the Lagrangian simplified with MATLAB code. First, this

thesis provides an outline of the system variables.

• qi - The position of joint i

• qdi - The velocity of joint i

• qddi - The acceleration of joint i

• ai - The the a transform of the DH parameters of row i

• di - The the d transform of the DH parameters of row i

• τi - The torque or force required at from joint i

• mli - The mass of link i

• pli - The CoM translation of link i. This transformation represents the end of the ith row of the DH

parameters. The following terms of x, y and z represent the direction for the single variable.

• Ili - The inertia tensor about the CoM of link i. The sequential terms of xx, yy, zz, xy, xz and yz

denote the respective components of the inertia tensor.

τ0 Calculation

τ0 = ml0 qdd0 − gxml1 − gxml2 − gxml3 − gxml0 + ml1 qdd0 + ml2 qdd0 + ml3 qdd0 +

a1ml1 qdd1 cos (q1) + a1ml2 qdd1 cos (q1) + a1ml3 qdd1 cos (q1) + ml1 pl1x qdd1 cos (q1) +

ml1 pl1z qdd1 sin (q1) + ml2 pl2z qdd1 sin (q1) − ml3 pl3y qdd1 sin (q1) + ml1 pl1z qd1
2 cos (q1) +

ml2 pl2z qd1
2 cos (q1) − ml3 pl3y qd1

2 cos (q1) − a1ml1 qd1
2 sin (q1) − a1ml2 qd1

2 sin (q1) −

a1ml3 qd1
2 sin (q1)−ml1 pl1x qd1

2 sin (q1) + a2ml2 qdd1 cos (q1) cos (q2) + a2ml3 qdd1 cos (q1) cos (q2) +

ml2 pl2x qdd1 cos (q1) cos (q2) − ml2 pl2y qdd1 cos (q1) sin (q2) − ml2 pl2y qdd2 cos (q2) sin (q1) −

a2ml2 qdd2 sin (q1) sin (q2) − a2ml3 qdd2 sin (q1) sin (q2) − ml2 pl2x qdd2 sin (q1) sin (q2) −

a2ml2 qd1
2 cos (q2) sin (q1) − a2ml2 qd2

2 cos (q2) sin (q1) − a2ml3 qd1
2 cos (q2) sin (q1) −

a2ml3 qd2
2 cos (q2) sin (q1) − ml2 pl2x qd1

2 cos (q2) sin (q1) − ml2 pl2x qd2
2 cos (q2) sin (q1) +

ml2 pl2y qd1
2 sin (q1) sin (q2) + ml2 pl2y qd2

2 sin (q1) sin (q2) + a3ml3 qdd1 cos (q1) cos (q2) cos (q3) +

ml3 pl3x qdd1 cos (q1) cos (q2) cos (q3) − ml3 pl3z qdd1 cos (q1) cos (q2) sin (q3) −

ml3 pl3z qdd1 cos (q1) cos (q3) sin (q2) − ml3 pl3z qdd2 cos (q2) cos (q3) sin (q1) −

ml3 pl3z qdd3 cos (q2) cos (q3) sin (q1) − a3ml3 qdd1 cos (q1) sin (q2) sin (q3) −
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a3ml3 qdd2 cos (q2) sin (q1) sin (q3) − a3ml3 qdd2 cos (q3) sin (q1) sin (q2) −

a3ml3 qdd3 cos (q2) sin (q1) sin (q3) − a3ml3 qdd3 cos (q3) sin (q1) sin (q2) −

ml3 pl3x qdd1 cos (q1) sin (q2) sin (q3) − ml3 pl3x qdd2 cos (q2) sin (q1) sin (q3) −

ml3 pl3x qdd2 cos (q3) sin (q1) sin (q2) − ml3 pl3x qdd3 cos (q2) sin (q1) sin (q3) −

ml3 pl3x qdd3 cos (q3) sin (q1) sin (q2) + ml3 pl3z qdd2 sin (q1) sin (q2) sin (q3) +

ml3 pl3z qdd3 sin (q1) sin (q2) sin (q3) − a3ml3 qd1
2 cos (q2) cos (q3) sin (q1) −

a3ml3 qd2
2 cos (q2) cos (q3) sin (q1) − a3ml3 qd3

2 cos (q2) cos (q3) sin (q1) −

ml3 pl3x qd1
2 cos (q2) cos (q3) sin (q1) − ml3 pl3x qd2

2 cos (q2) cos (q3) sin (q1) −

ml3 pl3x qd3
2 cos (q2) cos (q3) sin (q1) + ml3 pl3z qd1

2 cos (q2) sin (q1) sin (q3) +

ml3 pl3z qd1
2 cos (q3) sin (q1) sin (q2) + ml3 pl3z qd2

2 cos (q2) sin (q1) sin (q3) +

ml3 pl3z qd2
2 cos (q3) sin (q1) sin (q2) + ml3 pl3z qd3

2 cos (q2) sin (q1) sin (q3) +

ml3 pl3z qd3
2 cos (q3) sin (q1) sin (q2) + a3ml3 qd1

2 sin (q1) sin (q2) sin (q3) +

a3ml3 qd2
2 sin (q1) sin (q2) sin (q3) + a3ml3 qd3

2 sin (q1) sin (q2) sin (q3) +

ml3 pl3x qd1
2 sin (q1) sin (q2) sin (q3) + ml3 pl3x qd2

2 sin (q1) sin (q2) sin (q3) +

ml3 pl3x qd3
2 sin (q1) sin (q2) sin (q3) − 2ml2 pl2y qd1 qd2 cos (q1) cos (q2) −

2 a2ml2 qd1 qd2 cos (q1) sin (q2) − 2 a2ml3 qd1 qd2 cos (q1) sin (q2) − 2ml2 pl2x qd1 qd2 cos (q1) sin (q2) −

2ml3 pl3z qd1 qd2 cos (q1) cos (q2) cos (q3) − 2ml3 pl3z qd1 qd3 cos (q1) cos (q2) cos (q3) −

2 a3ml3 qd1 qd2 cos (q1) cos (q2) sin (q3) − 2 a3ml3 qd1 qd2 cos (q1) cos (q3) sin (q2) −

2 a3ml3 qd1 qd3 cos (q1) cos (q2) sin (q3) − 2 a3ml3 qd1 qd3 cos (q1) cos (q3) sin (q2) −

2 a3ml3 qd2 qd3 cos (q2) cos (q3) sin (q1) − 2ml3 pl3x qd1 qd2 cos (q1) cos (q2) sin (q3) −

2ml3 pl3x qd1 qd2 cos (q1) cos (q3) sin (q2) − 2ml3 pl3x qd1 qd3 cos (q1) cos (q2) sin (q3) −

2ml3 pl3x qd1 qd3 cos (q1) cos (q3) sin (q2) − 2ml3 pl3x qd2 qd3 cos (q2) cos (q3) sin (q1) +

2ml3 pl3z qd1 qd2 cos (q1) sin (q2) sin (q3) + 2ml3 pl3z qd1 qd3 cos (q1) sin (q2) sin (q3) +

2ml3 pl3z qd2 qd3 cos (q2) sin (q1) sin (q3) + 2ml3 pl3z qd2 qd3 cos (q3) sin (q1) sin (q2) +

2 a3ml3 qd2 qd3 sin (q1) sin (q2) sin (q3) + 2ml3 pl3x qd2 qd3 sin (q1) sin (q2) sin (q3)

τ1 Calculation

τ1 = Il2xx qdd1

2 + Il1yy qdd1 + Il3xx qdd1

2 +
Il2yy qdd1

2 + Il3zz qdd1

2 + ml1 pl1x
2 qdd1 + ml1 pl1z

2 qdd1 +

ml2 pl2x
2 qdd1

2 +
ml2 pl2y

2 qdd1

2 + ml2 pl2z
2 qdd1 + ml3 pl3x

2 qdd1

2 + ml3 pl3y
2 qdd1 + ml3 pl3z

2 qdd1

2 −

Il3xy qd2
2 cos (q2 + q3) − Il3xy qd3

2 cos (q2 + q3) + Il3yz qd2
2 sin (q2 + q3) + Il3yz qd3

2 sin (q2 + q3) −
Il2xx qdd1 cos(2 q2)

2 +
Il2yy qdd1 cos(2 q2)

2 + Il2xz qd2
2 cos (q2) + Il2xy qdd1 sin (2 q2) − Il2yz qd2

2 sin (q2) −
Il3xx qdd1 cos(2 q2+2 q3)

2 + Il3zz qdd1 cos(2 q2+2 q3)
2 + Il3xz qdd1 sin (2 q2 + 2 q3) − Il3yz qdd2 cos (q2 + q3) −

Il3yz qdd3 cos (q2 + q3) − Il3xy qdd2 sin (q2 + q3) − Il3xy qdd3 sin (q2 + q3) + Il2yz qdd2 cos (q2) +

Il2xz qdd2 sin (q2) + a1
2ml1 qdd1 + a1

2ml2 qdd1 + a1
2ml3 qdd1 + a2

2ml2 qdd1

2 + a2
2ml3 qdd1

2 +

a3
2ml3 qdd1

2 − a3 gxml3 cos(q2−q1+q3)
2 + 2 a1ml1 pl1x qdd1 + a2ml2 pl2x qdd1 + a3ml3 pl3x qdd1 +
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a3ml3 qdd0 cos(q2−q1+q3)
2 − gxml3 pl3x cos(q2−q1+q3)

2 +
gy ml3 pl3z cos(q2−q1+q3)

2 +
a3 gy ml3 sin(q2−q1+q3)

2 +

ml3 pl3x qdd0 cos(q2−q1+q3)
2 + gxml3 pl3z sin(q2−q1+q3)

2 +
gy ml3 pl3x sin(q2−q1+q3)

2 − 2 Il3xy qd2 qd3 cos (q2 + q3) +

a2
2ml2 qdd1 cos(2 q2)

2 + a2
2ml3 qdd1 cos(2 q2)

2 −ml3 pl3z qdd0 sin(q2−q1+q3)
2 − a2 gxml2 cos(q1+q2)

2 − a2 gxml3 cos(q1+q2)
2 +

2 Il3yz qd2 qd3 sin (q2 + q3) + ml2 pl2x
2 qdd1 cos(2 q2)

2 − ml2 pl2y
2 qdd1 cos(2 q2)

2 + a2ml2 qdd0 cos(q1+q2)
2 +

a2ml3 qdd0 cos(q1+q2)
2 − gxml2 pl2x cos(q1+q2)

2 − gy ml2 pl2y cos(q1+q2)
2 − a2 gy ml2 sin(q1+q2)

2 − a2 gy ml3 sin(q1+q2)
2 +

ml2 pl2x qdd0 cos(q1+q2)
2 +

gxml2 pl2y sin(q1+q2)
2 − gy ml2 pl2x sin(q1+q2)

2 + a3
2ml3 qdd1 cos(2 q2+2 q3)

2 −
ml2 pl2y qdd0 sin(q1+q2)

2 −a1 gxml1 cos (q1)−a1 gxml2 cos (q1)−a1 gxml3 cos (q1)+ml3 pl3x
2 qdd1 cos(2 q2+2 q3)

2 −
ml3 pl3z

2 qdd1 cos(2 q2+2 q3)
2 + a1ml1 qdd0 cos (q1) + a1ml2 qdd0 cos (q1) + a1ml3 qdd0 cos (q1) −

gxml1 pl1x cos (q1) + gyml1 pl1z cos (q1) + gyml2 pl2z cos (q1) − gyml3 pl3y cos (q1) − a1 gyml1 sin (q1) −

a1 gyml2 sin (q1) − a1 gyml3 sin (q1) + ml1 pl1x qdd0 cos (q1) − gxml1 pl1z sin (q1) − gxml2 pl2z sin (q1) +

gxml3 pl3y sin (q1) − gyml1 pl1x sin (q1) + ml1 pl1z qdd0 sin (q1) + ml2 pl2z qdd0 sin (q1) −

ml3 pl3y qdd0 sin (q1)− a2 gxml2 cos(q1−q2)
2 − a2 gxml3 cos(q1−q2)

2 + a2ml2 qdd0 cos(q1−q2)
2 + a2ml3 qdd0 cos(q1−q2)

2 −
gxml2 pl2x cos(q1−q2)

2 +
gy ml2 pl2y cos(q1−q2)

2 − a2 gy ml2 sin(q1−q2)
2 − a2 gy ml3 sin(q1−q2)

2 − a3 gxml3 cos(q1+q2+q3)
2 +

ml2 pl2x qdd0 cos(q1−q2)
2 + a3ml3 qdd0 cos(q1+q2+q3)

2 − gxml2 pl2y sin(q1−q2)
2 − gy ml2 pl2x sin(q1−q2)

2 −
gxml3 pl3x cos(q1+q2+q3)

2 − gy ml3 pl3z cos(q1+q2+q3)
2 − a3 gy ml3 sin(q1+q2+q3)

2 + 2 Il2xy qd1 qd2 cos (2 q2) +

ml2 pl2y qdd0 sin(q1−q2)
2 + ml3 pl3x qdd0 cos(q1+q2+q3)

2 + gxml3 pl3z sin(q1+q2+q3)
2 − gy ml3 pl3x sin(q1+q2+q3)

2 +

Il2xx qd1 qd2 sin (2 q2)−Il2yy qd1 qd2 sin (2 q2)−ml3 pl3z qdd0 sin(q1+q2+q3)
2 +2 Il3xz qd1 qd2 cos (2 q2 + 2 q3)+

2 Il3xz qd1 qd3 cos (2 q2 + 2 q3) + Il3xx qd1 qd2 sin (2 q2 + 2 q3) + Il3xx qd1 qd3 sin (2 q2 + 2 q3) −

Il3zz qd1 qd2 sin (2 q2 + 2 q3) − Il3zz qd1 qd3 sin (2 q2 + 2 q3) − ml2 pl2x pl2z qdd2 sin (q2) +

a2 a3ml3 qdd1 cos (2 q2 + q3) + a2ml3 pl3x qdd1 cos (2 q2 + q3) + a3ml3 pl3y qd2
2 cos (q2 + q3) +

a3ml3 pl3y qd3
2 cos (q2 + q3) + ml3 pl3x pl3y qd2

2 cos (q2 + q3) + ml3 pl3x pl3y qd3
2 cos (q2 + q3) −

a2ml3 pl3z qdd1 sin (2 q2 + q3) − ml3 pl3y pl3z qd2
2 sin (q2 + q3) − ml3 pl3y pl3z qd3

2 sin (q2 + q3) +

a2ml2 pl2x qdd1 cos (2 q2)−a2ml2 pl2z qd2
2 cos (q2)+a2ml3 pl3y qd2

2 cos (q2)−ml2 pl2x pl2z qd2
2 cos (q2)−

a2ml2 pl2y qdd1 sin (2 q2) − ml2 pl2x pl2y qdd1 sin (2 q2) + ml2 pl2y pl2z qd2
2 sin (q2) +

a3ml3 pl3x qdd1 cos (2 q2 + 2 q3) − a3ml3 pl3z qdd1 sin (2 q2 + 2 q3) − ml3 pl3x pl3z qdd1 sin (2 q2 + 2 q3) +

2 a1 a3ml3 qdd1 cos (q2 + q3) − a2
2ml2 qd1 qd2 sin (2 q2) − a2

2ml3 qd1 qd2 sin (2 q2) +

2 a1ml3 pl3x qdd1 cos (q2 + q3) − ml2 pl2x
2 qd1 qd2 sin (2 q2) + ml2 pl2y

2 qd1 qd2 sin (2 q2) +

ml3 pl3y pl3z qdd2 cos (q2 + q3) + ml3 pl3y pl3z qdd3 cos (q2 + q3) − 2 a1ml3 pl3z qdd1 sin (q2 + q3) +

a3ml3 pl3y qdd2 sin (q2 + q3) + a3ml3 pl3y qdd3 sin (q2 + q3) + ml3 pl3x pl3y qdd2 sin (q2 + q3) +

ml3 pl3x pl3y qdd3 sin (q2 + q3) + 2 a1 a2ml2 qdd1 cos (q2) + 2 a1 a2ml3 qdd1 cos (q2) +

a2 a3ml3 qdd1 cos (q3) − a3
2ml3 qd1 qd2 sin (2 q2 + 2 q3) − a3

2ml3 qd1 qd3 sin (2 q2 + 2 q3) +

2 a1ml2 pl2x qdd1 cos (q2) + a2ml3 pl3x qdd1 cos (q3) − ml3 pl3x
2 qd1 qd2 sin (2 q2 + 2 q3) −

ml3 pl3x
2 qd1 qd3 sin (2 q2 + 2 q3) + ml3 pl3z

2 qd1 qd2 sin (2 q2 + 2 q3) + ml3 pl3z
2 qd1 qd3 sin (2 q2 + 2 q3) −

ml2 pl2y pl2z qdd2 cos (q2)−2 a1ml2 pl2y qdd1 sin (q2)−a2ml2 pl2z qdd2 sin (q2)+a2ml3 pl3y qdd2 sin (q2)−

a2ml3 pl3z qdd1 sin (q3) − 2 a1ml3 pl3z qd1 qd2 cos (q2 + q3) − 2 a1ml3 pl3z qd1 qd3 cos (q2 + q3) +
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2 a3ml3 pl3y qd2 qd3 cos (q2 + q3) − 2 a1 a3ml3 qd1 qd2 sin (q2 + q3) − 2 a1 a3ml3 qd1 qd3 sin (q2 + q3) +

2ml3 pl3x pl3y qd2 qd3 cos (q2 + q3)−2 a1ml3 pl3x qd1 qd2 sin (q2 + q3)−2 a1ml3 pl3x qd1 qd3 sin (q2 + q3)−

2ml3 pl3y pl3z qd2 qd3 sin (q2 + q3) − 2 a1ml2 pl2y qd1 qd2 cos (q2) − a2ml3 pl3z qd1 qd3 cos (q3) −

2 a1 a2ml2 qd1 qd2 sin (q2) − 2 a1 a2ml3 qd1 qd2 sin (q2) − a2 a3ml3 qd1 qd3 sin (q3) −

2 a1ml2 pl2x qd1 qd2 sin (q2) − a2ml3 pl3x qd1 qd3 sin (q3) − 2 a2ml3 pl3z qd1 qd2 cos (2 q2 + q3) −

a2ml3 pl3z qd1 qd3 cos (2 q2 + q3) − 2 a2 a3ml3 qd1 qd2 sin (2 q2 + q3) − a2 a3ml3 qd1 qd3 sin (2 q2 + q3) −

2 a2ml3 pl3x qd1 qd2 sin (2 q2 + q3) − a2ml3 pl3x qd1 qd3 sin (2 q2 + q3) − 2 a2ml2 pl2y qd1 qd2 cos (2 q2) −

2ml2 pl2x pl2y qd1 qd2 cos (2 q2) − 2 a2ml2 pl2x qd1 qd2 sin (2 q2) − 2 a3ml3 pl3z qd1 qd2 cos (2 q2 + 2 q3) −

2 a3ml3 pl3z qd1 qd3 cos (2 q2 + 2 q3) − 2ml3 pl3x pl3z qd1 qd2 cos (2 q2 + 2 q3) −

2ml3 pl3x pl3z qd1 qd3 cos (2 q2 + 2 q3) − 2 a3ml3 pl3x qd1 qd2 sin (2 q2 + 2 q3) −

2 a3ml3 pl3x qd1 qd3 sin (2 q2 + 2 q3)

τ2 Calculation

τ2 = Il3yy qdd2 + Il3yy qdd3 + Il2zz qdd2 + ml2 pl2x
2 qdd2 + ml2 pl2y

2 qdd2 + ml3 pl3x
2 qdd2 +

ml3 pl3x
2 qdd3+ml3 pl3z

2 qdd2+ml3 pl3z
2 qdd3−Il2xy qd1

2 cos (2 q2)− Il2xx qd1
2 sin(2 q2)
2 +

Il2yy qd1
2 sin(2 q2)
2 −

Il3yz qdd1 cos (q2 + q3) − Il3xy qdd1 sin (q2 + q3) − Il3xz qd1
2 cos (2 q2 + 2 q3) − Il3xx qd1

2 sin(2 q2+2 q3)
2 +

Il3zz qd1
2 sin(2 q2+2 q3)

2 +Il2yz qdd1 cos (q2)+Il2xz qdd1 sin (q2)+a2
2ml2 qdd2+a2

2ml3 qdd2+a3
2ml3 qdd2+

a3
2ml3 qdd3 + a3 gxml3 cos(q2−q1+q3)

2 + 2 a2ml2 pl2x qdd2 + 2 a3ml3 pl3x qdd2 + 2 a3ml3 pl3x qdd3 −
a3ml3 qdd0 cos(q2−q1+q3)

2 + gxml3 pl3x cos(q2−q1+q3)
2 − gy ml3 pl3z cos(q2−q1+q3)

2 − a3 gy ml3 sin(q2−q1+q3)
2 −

ml3 pl3x qdd0 cos(q2−q1+q3)
2 − gxml3 pl3z sin(q2−q1+q3)

2 − gy ml3 pl3x sin(q2−q1+q3)
2 + ml3 pl3z qdd0 sin(q2−q1+q3)

2 −
a2 gxml2 cos(q1+q2)

2 − a2 gxml3 cos(q1+q2)
2 − a3 gzml3 cos (q2 + q3) + a2ml2 qdd0 cos(q1+q2)

2 +

a2ml3 qdd0 cos(q1+q2)
2 − gxml2 pl2x cos(q1+q2)

2 − gy ml2 pl2y cos(q1+q2)
2 − gzml3 pl3x cos (q2 + q3) −

a2 gy ml2 sin(q1+q2)
2 − a2 gy ml3 sin(q1+q2)

2 + ml2 pl2x qdd0 cos(q1+q2)
2 +

gxml2 pl2y sin(q1+q2)
2 − gy ml2 pl2x sin(q1+q2)

2 +

gzml3 pl3z sin (q2 + q3) − ml2 pl2y qdd0 sin(q1+q2)
2 − a2 gzml2 cos (q2) − a2 gzml3 cos (q2) −

gzml2 pl2x cos (q2) + gzml2 pl2y sin (q2) + a2 gxml2 cos(q1−q2)
2 + a2 gxml3 cos(q1−q2)

2 + a2
2ml2 qd1

2 sin(2 q2)
2 +

a2
2ml3 qd1

2 sin(2 q2)
2 − a2ml2 qdd0 cos(q1−q2)

2 − a2ml3 qdd0 cos(q1−q2)
2 + gxml2 pl2x cos(q1−q2)

2 − gy ml2 pl2y cos(q1−q2)
2 +

a2 gy ml2 sin(q1−q2)
2 +

a2 gy ml3 sin(q1−q2)
2 − a3 gxml3 cos(q1+q2+q3)

2 + ml2 pl2x
2 qd1

2 sin(2 q2)
2 − ml2 pl2y

2 qd1
2 sin(2 q2)

2 −
ml2 pl2x qdd0 cos(q1−q2)

2 + a3ml3 qdd0 cos(q1+q2+q3)
2 +

gxml2 pl2y sin(q1−q2)
2 +

gy ml2 pl2x sin(q1−q2)
2 −

gxml3 pl3x cos(q1+q2+q3)
2 − gy ml3 pl3z cos(q1+q2+q3)

2 − a3 gy ml3 sin(q1+q2+q3)
2 − ml2 pl2y qdd0 sin(q1−q2)

2 +

ml3 pl3x qdd0 cos(q1+q2+q3)
2 + gxml3 pl3z sin(q1+q2+q3)

2 − gy ml3 pl3x sin(q1+q2+q3)
2 + a3

2ml3 qd1
2 sin(2 q2+2 q3)
2 −

ml3 pl3z qdd0 sin(q1+q2+q3)
2 + ml3 pl3x

2 qd1
2 sin(2 q2+2 q3)
2 − ml3 pl3z

2 qd1
2 sin(2 q2+2 q3)
2 −ml2 pl2x pl2z qdd1 sin (q2) +

a1ml3 pl3z qd1
2 cos (q2 + q3) + a1 a3ml3 qd1

2 sin (q2 + q3) + a1ml3 pl3x qd1
2 sin (q2 + q3) +

a1ml2 pl2y qd1
2 cos (q2) − a2ml3 pl3z qd3

2 cos (q3) + a1 a2ml2 qd1
2 sin (q2) + a1 a2ml3 qd1

2 sin (q2) −

a2 a3ml3 qd3
2 sin (q3)+a1ml2 pl2x qd1

2 sin (q2)−a2ml3 pl3x qd3
2 sin (q3)+a2ml3 pl3z qd1

2 cos (2 q2 + q3)+

a2 a3ml3 qd1
2 sin (2 q2 + q3) + a2ml3 pl3x qd1

2 sin (2 q2 + q3) + a2ml2 pl2y qd1
2 cos (2 q2) +
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ml2 pl2x pl2y qd1
2 cos (2 q2) + a2ml2 pl2x qd1

2 sin (2 q2) + ml3 pl3y pl3z qdd1 cos (q2 + q3) +

a3ml3 pl3y qdd1 sin (q2 + q3) + a3ml3 pl3z qd1
2 cos (2 q2 + 2 q3) + ml3 pl3x pl3y qdd1 sin (q2 + q3) +

2 a2 a3ml3 qdd2 cos (q3) + a2 a3ml3 qdd3 cos (q3) + ml3 pl3x pl3z qd1
2 cos (2 q2 + 2 q3) +

a3ml3 pl3x qd1
2 sin (2 q2 + 2 q3) + 2 a2ml3 pl3x qdd2 cos (q3) + a2ml3 pl3x qdd3 cos (q3) −

ml2 pl2y pl2z qdd1 cos (q2)−a2ml2 pl2z qdd1 sin (q2)+a2ml3 pl3y qdd1 sin (q2)−2 a2ml3 pl3z qdd2 sin (q3)−

a2ml3 pl3z qdd3 sin (q3) − 2 a2ml3 pl3z qd2 qd3 cos (q3) − 2 a2 a3ml3 qd2 qd3 sin (q3) −

2 a2ml3 pl3x qd2 qd3 sin (q3)

τ3 Calculation

τ3 = Il3yy qdd2 + Il3yy qdd3 + ml3 pl3x
2 qdd2 + ml3 pl3x

2 qdd3 + ml3 pl3z
2 qdd2 + ml3 pl3z

2 qdd3 −

Il3yz qdd1 cos (q2 + q3) − Il3xy qdd1 sin (q2 + q3) − Il3xz qd1
2 cos (2 q2 + 2 q3) − Il3xx qd1

2 sin(2 q2+2 q3)
2 +

Il3zz qd1
2 sin(2 q2+2 q3)

2 + a3
2ml3 qdd2 + a3

2ml3 qdd3 + a3 gxml3 cos(q2−q1+q3)
2 + 2 a3ml3 pl3x qdd2 +

2 a3ml3 pl3x qdd3 − a3ml3 qdd0 cos(q2−q1+q3)
2 + gxml3 pl3x cos(q2−q1+q3)

2 − gy ml3 pl3z cos(q2−q1+q3)
2 −

a3 gy ml3 sin(q2−q1+q3)
2 − ml3 pl3x qdd0 cos(q2−q1+q3)

2 − gxml3 pl3z sin(q2−q1+q3)
2 − gy ml3 pl3x sin(q2−q1+q3)

2 +

ml3 pl3z qdd0 sin(q2−q1+q3)
2 − a3 gzml3 cos (q2 + q3) − gzml3 pl3x cos (q2 + q3) + gzml3 pl3z sin (q2 + q3) −

a3 gxml3 cos(q1+q2+q3)
2 + a3ml3 qdd0 cos(q1+q2+q3)

2 − gxml3 pl3x cos(q1+q2+q3)
2 − gy ml3 pl3z cos(q1+q2+q3)

2 −
a3 gy ml3 sin(q1+q2+q3)

2 + ml3 pl3x qdd0 cos(q1+q2+q3)
2 + gxml3 pl3z sin(q1+q2+q3)

2 − gy ml3 pl3x sin(q1+q2+q3)
2 +

a3
2ml3 qd1

2 sin(2 q2+2 q3)
2 − ml3 pl3z qdd0 sin(q1+q2+q3)

2 + ml3 pl3x
2 qd1

2 sin(2 q2+2 q3)
2 − ml3 pl3z

2 qd1
2 sin(2 q2+2 q3)
2 +

a1ml3 pl3z qd1
2 cos (q2 + q3) + a1 a3ml3 qd1

2 sin (q2 + q3) + a1ml3 pl3x qd1
2 sin (q2 + q3) +

a2ml3 pl3z qd1
2 cos(q3)

2 + a2ml3 pl3z qd2
2 cos (q3) + a2 a3ml3 qd1

2 sin(q3)
2 + a2 a3ml3 qd2

2 sin (q3) +

a2ml3 pl3x qd1
2 sin(q3)

2 + a2ml3 pl3x qd2
2 sin (q3) + a2ml3 pl3z qd1

2 cos(2 q2+q3)
2 + a2 a3ml3 qd1

2 sin(2 q2+q3)
2 +

a2ml3 pl3x qd1
2 sin(2 q2+q3)
2 + ml3 pl3y pl3z qdd1 cos (q2 + q3) + a3ml3 pl3y qdd1 sin (q2 + q3) +

a3ml3 pl3z qd1
2 cos (2 q2 + 2 q3) + ml3 pl3x pl3y qdd1 sin (q2 + q3) + a2 a3ml3 qdd2 cos (q3) +

ml3 pl3x pl3z qd1
2 cos (2 q2 + 2 q3) + a3ml3 pl3x qd1

2 sin (2 q2 + 2 q3) + a2ml3 pl3x qdd2 cos (q3) −

a2ml3 pl3z qdd2 sin (q3)
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B.0.6 Grasp Force Estimation Raw Data

Table B.1: The measured and estimated grasp forces of the gripper.

LFG: Lateral Flexion Grasp
Target Pose
q2: 0.0rad
q3: −1.5708rad

Measured mean
grasping force (N)

from loadcell

Commanded
goal torques
(Dynamixel)

Stall Torque
Estimation

(Nm)

Js(q): est.
actuator
torques

Actuator
position

(rad)

6.99± 0.36 50 0.38
q2: 0.32Nm
q3: 0.11Nm

q2: 0.6035± 0.0070
q3: −1.5364± 0.0063

12.31± 0.29 100 0.72
q2: 0.55Nm
q3: 0.17Nm

q2: 0.5546± 0.0020
q3: −1.5287± 0.0079

20.76± 0.16 150 1.06
q2: 0.9Nm
q3: 0.25Nm:

q2: 0.5164± 0.0006
q3: −1.5331± 0.0011

29.07± 0.12 200 1.4
q2: 1.23Nm
q3: 0.31Nm

q2: 0.4807± 0.0010
q3: −1.5302± 0.0012

LEG: Lateral Extension Grasp
Target Pose
q2: 0.0rad
q3: −0.6328rad

Measured mean
grasping force (N)

from loadcell

Commanded
goal torques
(Dynamixel)

Stall Torque
Estimation

(Nm)

Js(q): est.
actuator
torques

Actuator
position

(rad)

5.1± 0.05 50 0.38
q2: 0.35Nm
q3: 0.17Nm

q2: 0.1495± 0.0031
q3: −0.6113± 0.0044

8.8± 0.18 100 0.72
q2: 0.6Nm
q3: 0.29Nm

q2: 0.1029± 0.0019
q3: −0.6085± 0.0006

16.19± 0.03 150 1.06
q2: 1.08Nm
q3: 0.5Nm

q2: 0.0639± 0.0007
q3: −0.6076± 0.0000

17.25± 0.11 200 1.4
q2: 1.15Nm
q3: 0.53Nm

q2: 0.0587± 0.0006
q3: −0.6073± 0.0007
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Appendix C

Gripper Development

C.1 Acknowledgement of Collaborative Contributions

• Jamie Plowman (Lab Engineer) - Jamie provided assistance throughout the entire development cycle of the

gripper between 2020 and 2021. His contributions included building the initial conceptual CAD model of

the proposed gripper, providing advice to the candidate on circuit design, and offering counsel on sensor

integration techniques.

• Jed Hodson (Undergraduate Student) - Jed dedicated his time to engineering groundwork in 2019 and

2020 through volunteering. His contribution involved working on the design, fabrication, electronics, and

firmware of the first two iterations of the gripper, showcased in Figures 4.4(a) and 4.4(b). Jed’s work laid the

foundation for the engineering work that led to the development of the final research prototype, illustrated

in Figure 4.4(c).

• Charles Raffaele (Undergraduate Student) - Charles volunteered his time developing robotic grasping demos

that used trained computer vision models to detect clothing to grasp throughout 2021. He also created a ROS

framework to control the Baxter robot and move the arms towards targeted grasping points.

• Chris Wu (Masters Student) - During 2021, Chris worked on optimising and training MaskRCNN models

on custom data sets. These models were specifically designed to detect clothing. The computer vision

modules were then utilised for the Baxter robot to see and grasp clothing in practical demonstrations.

• Dylan Morely (Undergraduate Student) - In 2022, Dylan contributed to the final research prototype (Figure

4.4(c)) by providing design work. His role involved collaborating with the Faculty of Arts and Design at

the University of Canberra to create aluminium brackets for the gripper’s link components, which formed

grasps. He was also responsible for fabricating the main chassis components on the final gripper design.

• David Hinwood - David, the Ph.D. candidate of this thesis, was responsible for completing the entire project.

He played a crucial role in designing the gripper and contributed to every project phase. David also worked
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closely with all collaborators to design, fabricate, and program the electronics and firmware. Additionally,

he was solely responsible for creating the final prototype’s circuitry, electronics, and firmware. Further-

more, David was responsible for integrating the hand into a ROS framework, rigid-body modelling, system

evaluation, and reinforcement learning research.

C.2 List of Electronic Components

Part Image Description Manufacturer

A4988 Stepper Driver - POLOLU-1182
A breakout board that interfaces with the
A4988 chip, this chip is a micro-stepping
bipolar stepper motor driver. The circuit
also contains a potentiometer to limit cur-
rent flow and in-built temperature protec-
tions. This device uses between 8-35V and
connects to the SparkFun Qwiic Pro mi-
crocontroller to operate the stepper motor.

Pololu

NEMA 17 Stepper - POLOLU-2267
The prismatic component of the gripper
uses this stepper motor to actuate. The
motor operates in steps, and each revolu-
tion has 200 steps. However, when inter-
faced with the A4988, micro-stepping for
more refined motion is possible.

Pololu via SOYO
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Part Image Description Manufacturer

Dynamixel XM-430-350-R
These rotational actuators make up the
remaining three joints of the gripper.
Each one operates a low-level impedance
control appropriate for grasping applica-
tions. Controlling these actuators operates
through a serial line interfacing to an RS-
485 protocol (See the MAX485 breakout).

Dynamixel

Logic level converter - BOB-12009
These components are bi-directional logic
level converters, enabling communication
between chips that operate on differing cir-
cuit voltages. In this application, the logic
level converters enable the Teensy device
to communicate with the Qwiic Pro micro-
controller and the MAX485 chip.

Sparkfun

Teensy 4.0 - DEV-15583
The Teensy 4.0 micro-controller is a high-
speed processing unit commonly seen in
robotic applications. In this application,
the Teensy communicates between the
host PC, the sensors, and the actuator con-
trollers, acting as the primary system con-
troller.

PJRC

5Mhz Qwiic Pro - DEV-15795
This controller acts as the primary inter-
face to the stepper motor. By communi-
cating the actuator operation details with
the Teensy, this processor then controls the
position and velocity behaviour of the pris-
matic actuator through the A4988 stepper
driver.

Sparkfun
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Part Image Description Manufacturer

3V3 step down - POLOLU-2857
This step-down voltage converter takes an
input voltage from 4-36V and reduces it
to 3.3V. It is capable of providing 2.6A of
current.

Pololu

5V step down - POLOLU-2851
This step-down voltage converter takes an
input voltage up to 38V and reduces it to
5V. It is capable of providing 5A of cur-
rent.

Pololu

12V step down - POLOLU-2885
This step-down voltage converter takes an
input voltage up to 40V and reduces it to
12V. It is capable of providing 15A of cur-
rent.

Pololu

MAX485 - CE05154
This chip converts data from a serial com-
munication line into the RS-485 protocol.
This chip allows a pair of serial pins on
the Teensy microcontroller to communi-
cate with Dynamixel actuators.

Core Electronics
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Part Image Description Manufacturer

MPRLS Pressure Sensor - ADA-3965
This breakout is pressure sensor which
communicates barometric pressure data
across the i2c line. The pressure measured
comes from an enclosed silicon tube that
acts as a bumper sensor to detect colli-
sions. The tube attaches to central port of
the breakout. The breakout uses the com-
municates the i2c interface to the Teensy
controller.

Adafruit

ToF Laser Sensor - ADA-3317
This is a sensor that measures linear dis-
tance to a surface. Like the pressure sen-
sor, this device also communicates to the
Teensy with the i2c line. This sensor is
used to calibrate the prismatic component
by reading the rail displacement. How-
ever, it cannot be used in a closed loop
form as the sensor takes approximately
100ms to take a single reading.

Adafruit

9DoF sensing Stick - SEN-13944
This breakout is a gyroscope device that
uses the LSM9DS1, a motion-capture chip
that contains a 3-axis accelerometer, 3-
axis gyroscope, and 3-axis magnetometer.
This sensor provides a robust motion sens-
ing platform that communicates with the
Teensy controller over the i2c interface.

Sparkfun

CP2104 USB-to-Serial - POLOLU-1308
This breakout carries a USB to UART
bridge that enables a USB cable from a
host PC to communicate with the Teensy.
This device is integrated onto the circuit
board such that the USB line will power
the breakout while communicating with
the gripper.

Pololu
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C.3 Microcontroller Communication

Table C.1: The available destination and commands for the serial protocol.

DESTINATION
uint8 integer

COMMAND
uint8 integer

JOINT 0

TARGET POSITION
TARGET VELOCITY
PRESENT POSITION
PRESENT VELOCITY

IS MOVING
ENABLED

ERROR STATUS

JOINT 1
JOINT 2
JOINT 3

TARGET POSITION
TARGET CURRENT
PRESENT POSITION
PRESENT VELOCITY
PRESENT VOLTAGE

PRESENT TEMPERATURE
PRESENT LOAD

ENABLED
IS MOVING

ERROR STATUS

SENSOR IMU

REQUEST
GYRO ROLL
GYRO PITCH
GYRO ROLL

SENSOR PRESSURE PRESSURE READING

TOF LASER REQUEST
LASER READING

EVAL

CONTROL LOOP DURATION
DYNA COMMAND DURATION

TEENSY INTERFACE DURATION
QWIIC INTERFACE DURATION

C.4 Dynamic Parameters Estimation

The dynamics parameters in the modelling process differ slightly from the URDF values. This section of the

appendix recalculates the inertia tensor and CoM parameters to align with the intended DH parameters. Two

coordinate frames from the URDF do not require alteration when performing the modelling process. The inertia

tensor for the prismatic actuator of the system simply defaults to zeros. The orientation of the EE frame is

coincidentally in the correct orientation for both the URDF and modelling process. These aspects result in the

inertia tensors from the URDF’s first and last links as remaining equal for the DH parameters. For the remaining

links, the inertia tensors about the CoM require reorientation. Reorienting the inertia tensor is a simple matter

of taking a rotation matrix Ro constituting the desired reorientation sequence, with the inertia tensor Io, and the

reoriented inertia tensor can then be expressed as RoIoRTo . As URDFs differ fundamentally from the convention

used in the modelling process, inertia tensors are initially estimated from the joint actuating the link. However, per
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Figure C.1: A comparative view of URDF and DH coordinate frames.

the modelling process, inertia tensors about the CoM are taken from the orientation of the end of the DH row. The

following equations demonstrate how the new inertia tensors about the CoM for both links 1 (Eq. C.1) and 2 (Eq.

C.2) are calculated. Conveniently, for both inertia tensor reorientations, a simple rotation of π2 is required.

I1urdf =


8005886927989945

36893488147419103232
1

1000000
308982963234635

4611686018427387904

1
1000000

2222832660882001
9223372036854775808 − 1

1000000

308982963234635
4611686018427387904 − 1

1000000
1724770570891843

9223372036854775808


I1 = Rx

(π
2

)
·I1urdf ·Rx

(π
2

)T

I1 =


8005886927989945

36893488147419103232 − 308982963234635
4611686018427387904

1
1000000

− 308982963234635
4611686018427387904

1724770570891843
9223372036854775808

1
1000000

1
1000000

1
1000000

2222832660882001
9223372036854775808



(C.1)

I2urdf =


534955578137577

18446744073709551616 0 − 1
1000000

0 3
100000 0

− 1
1000000 0 6198106008766409

295147905179352825856


I2 = Rx

(π
2

)
·I2urdf ·Rx

(π
2

)T

I2 =


534955578137577

18446744073709551616
1

1000000 0

1
1000000

6198106008766409
295147905179352825856 0

0 0 3
100000



(C.2)

Taking the noted discrepancies between the URDF and the modelling process, the CoM parameters are now

recalculated for the modelling process. However some slight alterations are made when estimating the new CoM

parameters. To start with, the URDF positions the actuators on the edge of the Dynamixels bodies, despite the

bracket coupling present on the final two joints. To that end, the modelling process assumes actuation takes place
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from the centre of the Dynamixel’s body for these joints. Therefore, one way of thinking about modifying the

CoM value is that the CoM is being recalculated from to the next frame in the URDF and oriented to match

the DH parameters. To that end, the transforms between joints alongside the URDF CoM values are used in

the calculations. Additionally, the final coordinate frame in the URDF is positioned at the sensor. Whereas the

dynamics parameters do not consider the sensor and simply include it’s weight and distribution as part of the final

link. Considering all the these details, the recalculation for each link’s CoM to the modelling process is now

present in Equations C.3, C.4, C.5 and C.6. Note, the function T denotes a homogeneous transformation matrix

from a xyz vector or a specific translation along a axis with a subscript. The new CoM value for the modelling

process of each link is denoted as CoMi.DH.

For link 0, the CoM transform from the URDF’s previous joint is shown below as CoM0.urdf

CoM0.urdf =
[

0. 0 0. 006 0. 026
]

(xyz)

The transformation from the previous joint to the next connection point is expressed as Jt0

Jt0 =
[

8. 7e− 05 0. 022115 0. 049537
]

(xyz)

Finally, the calculation of CoM0.DH

CoM0.DH =
(
T (CoM0.urdf)

−1 · T (Jt0)
)−1

CoM0.DH =
[
−0. 0001 −0. 0161 −0. 0235

]

(C.3)

The following equations use the same denominations as those given in Eq. C.3.

CoM1.urdf =
[
−0. 013 0. 0 0. 034

]
(xyz)

Jt1 =
[

0. 019959 0. 019105 0. 020579
]

(xyz)

In the calculation of CoM1.DH, an additional translation along the z-axis accounts for the bearing

attachment mechanism (remembering that the CoM for this link with rely on the the third actuator’s position)

CoM1.DH =
(
T (CoM1.urdf)

−1 · T (Jt1) ·Rx
(π

2

)
·T z (0. 019105)

)−1

CoM1.DH =
[
−0. 0330 0. 0134 0

]
(C.4)
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CoM2.urdf =
[

0. 034 −0. 019 0. 011
]

(xyz)

Jt2 =
[

0. 035744 0. 0011 −0. 000297
]

(xyz)

CoM2.DH =
(
T (CoM2.urdf)

−1 · T (Jt2) ·Rx
(π

2

)
·T z (0. 019105)

)−1

CoM2.DH =
[
−0. 0017 0. 0113 0. 0010

]
(C.5)

CoM3.urdf =
[

0. 022 −0. 019 −0. 007
]

(xyz)

Jt3 =
[

0. 044491 −0. 019002 −0. 013363
]

(xyz)

An additional transform is present to account for the position of the sensor, see Section 4.2

and the variable of ∆z

CoM3.DH =
(
T (CoM3.urdf)

−1 · T (Jt3) ·T z (0. 013363)
)−1

CoM3.DH =
[
−0. 0225 0 −0. 007

]

(C.6)
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Appendix D

Reinforcement Learning Supplemental

Materials

D.1 Arbitrary Grasping Environment Details

D.1.1 Learning Vector Details

State space attribute
(24 elements) Description Normalization Range

(-0.75 — 0.75)
Grey cells indicate action
space values

Yellow cells indicate components that are
subject to noise from domain randomization Lower Bound Upper Bound

SENSOR TCP X
The x position of the sensor calculated from
Equation x s using the present position
values.

-0.05 0.25

SENSOR TCP Y
The y position of the sensor, calculated from
Equation y s using the present position
values.

-0.15 0.15

SENSOR TCP Z
The z position of the sensor, calculated from
Equation z s using the present position
values.

-0.1 0.15

SENSOR TCP P
The pitch orientation aspect of the sensor,
calculated from Equation p s using the present
position values.

-1 2.2

J0 TARGET POSITION
The target position given to the prismatic
actuator in meters. 0.0 0.08

J1 TARGET POSITION
The target position given to the first rotational
actuator in radians. 0.872665 2.26893

J2 TARGET POSITION
The target position given to the second
rotational actuator in radians. 0.0 1.5708

J3 TARGET POSITION
The target position given to the third rotational
actuator in radians. -1.5708 0.174533

J0 PRESENT POSITION
The present position of the prismatic rail
component in meters. 0.0 0.08
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J1 PRESENT POSITION
The present position of the first rotational
actuator in radians. 0.872665 2.26893

J2 PRESENT POSITION
The present position of the second rotational
actuator in radians. 0.0 1.5708

J3 PRESENT POSITION
The present position of the third rotational
actuator in radians. -1.5708 0.174533

J0 TARGET VELOCITY
The target velocity command given to the
prismatic rail (units in meters/sec). -0.055 0.055

J1 TARGET CURRENT
The target current value given to the first
rotational actuator (units in Dynamixel Current
steps, see cite).

15 50

J2 TARGET CURRENT
The target current value given to the second
rotational actuator (units in Dynamixel Current
steps, see cite).

15 50

J3 TARGET CURRENT
The target current value given to the third
rotational actuator (units in Dynamixel Current
steps, see cite).

15 50

J0 PRESENT VELOCITY
The present velocity of the prismatic actuator
(units in meters/sec). -0.055 0.055

J1 PRESENT VELOCITY
The present velocity of the first rotational
actuator (units in rad/sec). -4.81711 4.81711

J2 PRESENT VELOCITY
The present velocity of the second rotational
actuator (units in rad/sec). -4.81711 4.81711

J3 PRESENT VELOCITY
The present velocity of the third rotational
actuator (units in rad/sec). -4.81711 4.81711

FORCE Z
The force reading of the sensor in the Z
direction (units in Newtons) -5 15

GYRO X
The normalized reading of the gyroscope
about the x-axis (units in radians) -pi pi

GYRO Y
The normalized reading of the gyroscope
about the y-axis (units in radians) -pi pi

EC DISTANCE
The distance traversed across the environment
while grasping. Given by the reward function
which tracks this parameter (units in meters)

-0.1 0.1

D.1.2 Domain Randomisation Components

Simulation Components Domain Randomisation
Configurations

Element of
simulation Details Units Lower

Bound
Upper
Bound

Noise
Type

Gripper Orientation
(ZYX)

The roll-pitch-yaw angles of the
gripper’s orientation relative to the
world coordinate frame w. Noise is
added to each ground truth value
read from the simulation.

Radians -0.0523599 0.0523599 Uniform

Rotational Joint
Positions

The position of the rotational joints.
Noise is added to each ground truth
value read from the simulation.

Radians -0.05 0.05 Uniform

Rotational Joint
Velocities

The velocities of the rotational joints.
Noise is added to each ground truth
value read from the simulation.

Radians/sec -0.03 0.03 Uniform
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Simulation Components Domain Randomisation
Configurations

Rotational Joint
Position Gain

The position gain for the underlying
PD controller that operates the
simulated rotational joints. This value
is randomly generated between the
noise bounds each time the simulator
performs a hard reset.

N/A
(float

constant)
0.25 0.44 Uniform

Rotational Joint
Stall Torque

Equation

The linear expression that determines
the stall torque of the actuators. The
default gradient from Eq. X remains
constant while offset value varies
between the boundaries

N/A
(float

constants)
0.01 0.08 Uniform

Prismatic
Joint Position

The position of the prismatic rail
mechanism. Noise is added to each
ground truth value read from the
simulation.

Meters -0.002 0.002 Uniform

Prismatic
Joint Velocity

The velocity of the prismatic rail
mechanism. Noise is added to each
ground truth value read from the
simulation.

Meters/sec -0.002 0.002 Uniform

Environment
Gravity

The gravity force of the simulation.
hardreset. Newton (N) -9.1233 -10.4967 Uniform

Link mass
(default value

of m)

The mass of each link in kilograms.
The default value is held in the
URDF. hardreset.

Kg m*0.8 m*1.2 Uniform

Orientation of the
environment

surface

The orientation of the environment
surface about the x-axis and y-axis.
hardreset

Radians -0.0523599 0.0523599 Uniform

Texture of the
environment

surface

The are four URDF files creating
various environment surfaces for
the gripper. Upon every simulator
hard reset, the next surface in the
sequence is embedded into the
simulation.

N/A
(integer

constant)
0 3 Sequential

Fz value read
from the fingertip

force sensor.

A small amount of random noise applied
to the force sensor’s Fz readings. Newton (N) -0.35 0.35 Uniform

Exponential
function defining
degradation of Fz

readings.

An exponential function defined as
f(x) = c · akx + d where x
is the input displacement (in mm)
from the sensors centre point of Figure
5.7. The values of c, a, k and d
are chosen from 16 user-defined
exponential functions.

N/A N/A N/A Uniform

Friction of the
environment

surface

The lateral friction parameter for
the environment surface.
(Add footnote)

N/A
(float

constant)
0.02 1.25 Uniform

Friction of the
gripper’s sensor

The friction of the triaxial force
sensor.

N/A
(float

constant)
0.65 1.0 Uniform
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D.2 Reward Class Pseudocode

Algorithm 4 The class structure hosting the reward function to encourage EC grasping

Input: (rs) . Requires an input reward scaling value upon class initialisation.
ECdist ← 0 . Set the distance travelled while traversing the environment to 0.
Racc ← 0 . This variable tracks the accumulated reward while dragging along the environment.
Rsg ← 100× rs . Initialises the reward value for a successful grasp.
Ric ← 25× rs . Initialises the reward value for initially colliding with the environment.
Rec ← 1500× rs . Initialises the reward value for traversing along the environment.
function CALCULATEREWARD(s, s′) . Inputs include the previous state s and present state s′.

bool colls ← if s indicates the gripper was previously in contact with the environment
bool colls′ ← if s′ indicates the gripper is currently in contact with environment
bool grasps′ ← if s′ indicates the gripper is currently in a grasp pose
if colls′ then

if colls then
Calculate the change in euclidean distance of the fingertip from the static plate
ecδ = CALCULATEEUCLIDEANDISTANCETRAVERSED(s, s′) . ecδ in meters
ECdist+ = ecδ . ecδ is negative if moving away from the static plate.
if Fingertip moves further away from the plate then . See Note 1.

return −Rec × ecδ . Penalise a traversing motion moving away from the plate.
else if Fingertip moves closer to the plate then . See Note 1.

Racc+ = Rec × ecδ . Add the reward from distance travelled to Racc.
return Rec × ecδ . Reward a traversing motion moving towards the plate.

end if
else if not colls then

return Ric . Return the reward value for making initial contact with the environment.
end if

else if grasps′ and ECdist > 0.0015 then . Conditions for a successful grasp (units in meters).
return Rsg . Return the reward for a successful grasp attempt

else if The policy abandons the grasping trajectory then . See Note 2.
rw ← −Racc . Set the returned reward to the accumulated reward value Racc.
ECdist ← 0 . Reset the distance travelled to 0 for a new grasping attempt.
Racc ← 0 . Reset the accumulated dragging reward to 0 for a new grasping attempt.
return rw . Return a penalising value based on the reward received while dragging.

end if
return 0 . Return a reward of 0 if no previous conditions are triggered.

end function

Notes:
1. Determining whether the fingertip moved closer or further away from the plate uses Equations

4.12-4.15 and the known position of h described in section 5.2.2.
2. Determining whether abandonment of a trajectory or grasping motion has occurred was a series of

conditional Boolean evaluations based on kinematic configurations. An example occurs when the
gripper removes the fingertip from the environment while moving away from the static plate.
Alternatively, this condition activates if the gripper moves into a grasping configuration without
appropriately traversing along the environment surface first. When this abandonment occurs, the
reward function returns a penalised value equivalent to the sum of positive rewards received while
dragging along the environment.


